Metamath Proof Explorer


Theorem bija

Description: Combine antecedents into a single biconditional. This inference, reminiscent of ja , is reversible: The hypotheses can be deduced from the conclusion alone (see pm5.1im and pm5.21im ). (Contributed by Wolf Lammen, 13-May-2013)

Ref Expression
Hypotheses bija.1 ( 𝜑 → ( 𝜓𝜒 ) )
bija.2 ( ¬ 𝜑 → ( ¬ 𝜓𝜒 ) )
Assertion bija ( ( 𝜑𝜓 ) → 𝜒 )

Proof

Step Hyp Ref Expression
1 bija.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 bija.2 ( ¬ 𝜑 → ( ¬ 𝜓𝜒 ) )
3 biimpr ( ( 𝜑𝜓 ) → ( 𝜓𝜑 ) )
4 3 1 syli ( ( 𝜑𝜓 ) → ( 𝜓𝜒 ) )
5 biimp ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) )
6 5 con3d ( ( 𝜑𝜓 ) → ( ¬ 𝜓 → ¬ 𝜑 ) )
7 6 2 syli ( ( 𝜑𝜓 ) → ( ¬ 𝜓𝜒 ) )
8 4 7 pm2.61d ( ( 𝜑𝜓 ) → 𝜒 )