Metamath Proof Explorer


Theorem bijust

Description: Theorem used to justify the definition of the biconditional df-bi . Instance of bijust0 . (Contributed by NM, 11-May-1999)

Ref Expression
Assertion bijust ¬ ( ( ¬ ( ( 𝜑𝜓 ) → ¬ ( 𝜓𝜑 ) ) → ¬ ( ( 𝜑𝜓 ) → ¬ ( 𝜓𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑𝜓 ) → ¬ ( 𝜓𝜑 ) ) → ¬ ( ( 𝜑𝜓 ) → ¬ ( 𝜓𝜑 ) ) ) )

Proof

Step Hyp Ref Expression
1 bijust0 ¬ ( ( ¬ ( ( 𝜑𝜓 ) → ¬ ( 𝜓𝜑 ) ) → ¬ ( ( 𝜑𝜓 ) → ¬ ( 𝜓𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑𝜓 ) → ¬ ( 𝜓𝜑 ) ) → ¬ ( ( 𝜑𝜓 ) → ¬ ( 𝜓𝜑 ) ) ) )