Metamath Proof Explorer


Theorem biluk

Description: Lukasiewicz's shortest axiom for equivalential calculus. Storrs McCall, ed.,Polish Logic 1920-1939 (Oxford, 1967), p. 96. (Contributed by NM, 10-Jan-2005)

Ref Expression
Assertion biluk ( ( 𝜑𝜓 ) ↔ ( ( 𝜒𝜓 ) ↔ ( 𝜑𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 bicom ( ( 𝜑𝜓 ) ↔ ( 𝜓𝜑 ) )
2 1 bibi1i ( ( ( 𝜑𝜓 ) ↔ 𝜒 ) ↔ ( ( 𝜓𝜑 ) ↔ 𝜒 ) )
3 biass ( ( ( 𝜓𝜑 ) ↔ 𝜒 ) ↔ ( 𝜓 ↔ ( 𝜑𝜒 ) ) )
4 2 3 bitri ( ( ( 𝜑𝜓 ) ↔ 𝜒 ) ↔ ( 𝜓 ↔ ( 𝜑𝜒 ) ) )
5 biass ( ( ( ( 𝜑𝜓 ) ↔ 𝜒 ) ↔ ( 𝜓 ↔ ( 𝜑𝜒 ) ) ) ↔ ( ( 𝜑𝜓 ) ↔ ( 𝜒 ↔ ( 𝜓 ↔ ( 𝜑𝜒 ) ) ) ) )
6 4 5 mpbi ( ( 𝜑𝜓 ) ↔ ( 𝜒 ↔ ( 𝜓 ↔ ( 𝜑𝜒 ) ) ) )
7 biass ( ( ( 𝜒𝜓 ) ↔ ( 𝜑𝜒 ) ) ↔ ( 𝜒 ↔ ( 𝜓 ↔ ( 𝜑𝜒 ) ) ) )
8 6 7 bitr4i ( ( 𝜑𝜓 ) ↔ ( ( 𝜒𝜓 ) ↔ ( 𝜑𝜒 ) ) )