Description: Removal of conjunct from one side of an equivalence. (Contributed by NM, 21-Jun-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bimsc1 | ⊢ ( ( ( 𝜑 → 𝜓 ) ∧ ( 𝜒 ↔ ( 𝜓 ∧ 𝜑 ) ) ) → ( 𝜒 ↔ 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( ( 𝜒 ↔ ( 𝜓 ∧ 𝜑 ) ) → ( 𝜒 ↔ ( 𝜓 ∧ 𝜑 ) ) ) | |
| 2 | simpr | ⊢ ( ( 𝜓 ∧ 𝜑 ) → 𝜑 ) | |
| 3 | ancr | ⊢ ( ( 𝜑 → 𝜓 ) → ( 𝜑 → ( 𝜓 ∧ 𝜑 ) ) ) | |
| 4 | 2 3 | impbid2 | ⊢ ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 ∧ 𝜑 ) ↔ 𝜑 ) ) |
| 5 | 1 4 | sylan9bbr | ⊢ ( ( ( 𝜑 → 𝜓 ) ∧ ( 𝜒 ↔ ( 𝜓 ∧ 𝜑 ) ) ) → ( 𝜒 ↔ 𝜑 ) ) |