Metamath Proof Explorer


Theorem bimsc1

Description: Removal of conjunct from one side of an equivalence. (Contributed by NM, 21-Jun-1993)

Ref Expression
Assertion bimsc1 ( ( ( 𝜑𝜓 ) ∧ ( 𝜒 ↔ ( 𝜓𝜑 ) ) ) → ( 𝜒𝜑 ) )

Proof

Step Hyp Ref Expression
1 id ( ( 𝜒 ↔ ( 𝜓𝜑 ) ) → ( 𝜒 ↔ ( 𝜓𝜑 ) ) )
2 simpr ( ( 𝜓𝜑 ) → 𝜑 )
3 ancr ( ( 𝜑𝜓 ) → ( 𝜑 → ( 𝜓𝜑 ) ) )
4 2 3 impbid2 ( ( 𝜑𝜓 ) → ( ( 𝜓𝜑 ) ↔ 𝜑 ) )
5 1 4 sylan9bbr ( ( ( 𝜑𝜓 ) ∧ ( 𝜒 ↔ ( 𝜓𝜑 ) ) ) → ( 𝜒𝜑 ) )