Description: Removal of conjunct from one side of an equivalence. (Contributed by NM, 21-Jun-1993)
Ref | Expression | ||
---|---|---|---|
Assertion | bimsc1 | ⊢ ( ( ( 𝜑 → 𝜓 ) ∧ ( 𝜒 ↔ ( 𝜓 ∧ 𝜑 ) ) ) → ( 𝜒 ↔ 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | ⊢ ( ( 𝜒 ↔ ( 𝜓 ∧ 𝜑 ) ) → ( 𝜒 ↔ ( 𝜓 ∧ 𝜑 ) ) ) | |
2 | simpr | ⊢ ( ( 𝜓 ∧ 𝜑 ) → 𝜑 ) | |
3 | ancr | ⊢ ( ( 𝜑 → 𝜓 ) → ( 𝜑 → ( 𝜓 ∧ 𝜑 ) ) ) | |
4 | 2 3 | impbid2 | ⊢ ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 ∧ 𝜑 ) ↔ 𝜑 ) ) |
5 | 1 4 | sylan9bbr | ⊢ ( ( ( 𝜑 → 𝜓 ) ∧ ( 𝜒 ↔ ( 𝜓 ∧ 𝜑 ) ) ) → ( 𝜒 ↔ 𝜑 ) ) |