| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 2 | 1 | oveq1i | ⊢ ( 2 ↑ 𝑁 )  =  ( ( 1  +  1 ) ↑ 𝑁 ) | 
						
							| 3 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 4 |  | binom1p | ⊢ ( ( 1  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( ( 1  +  1 ) ↑ 𝑁 )  =  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 )  ·  ( 1 ↑ 𝑘 ) ) ) | 
						
							| 5 | 3 4 | mpan | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 1  +  1 ) ↑ 𝑁 )  =  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 )  ·  ( 1 ↑ 𝑘 ) ) ) | 
						
							| 6 | 2 5 | eqtrid | ⊢ ( 𝑁  ∈  ℕ0  →  ( 2 ↑ 𝑁 )  =  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 )  ·  ( 1 ↑ 𝑘 ) ) ) | 
						
							| 7 |  | elfzelz | ⊢ ( 𝑘  ∈  ( 0 ... 𝑁 )  →  𝑘  ∈  ℤ ) | 
						
							| 8 |  | 1exp | ⊢ ( 𝑘  ∈  ℤ  →  ( 1 ↑ 𝑘 )  =  1 ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝑘  ∈  ( 0 ... 𝑁 )  →  ( 1 ↑ 𝑘 )  =  1 ) | 
						
							| 10 | 9 | oveq2d | ⊢ ( 𝑘  ∈  ( 0 ... 𝑁 )  →  ( ( 𝑁 C 𝑘 )  ·  ( 1 ↑ 𝑘 ) )  =  ( ( 𝑁 C 𝑘 )  ·  1 ) ) | 
						
							| 11 |  | bccl2 | ⊢ ( 𝑘  ∈  ( 0 ... 𝑁 )  →  ( 𝑁 C 𝑘 )  ∈  ℕ ) | 
						
							| 12 | 11 | nncnd | ⊢ ( 𝑘  ∈  ( 0 ... 𝑁 )  →  ( 𝑁 C 𝑘 )  ∈  ℂ ) | 
						
							| 13 | 12 | mulridd | ⊢ ( 𝑘  ∈  ( 0 ... 𝑁 )  →  ( ( 𝑁 C 𝑘 )  ·  1 )  =  ( 𝑁 C 𝑘 ) ) | 
						
							| 14 | 10 13 | eqtrd | ⊢ ( 𝑘  ∈  ( 0 ... 𝑁 )  →  ( ( 𝑁 C 𝑘 )  ·  ( 1 ↑ 𝑘 ) )  =  ( 𝑁 C 𝑘 ) ) | 
						
							| 15 | 14 | sumeq2i | ⊢ Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 )  ·  ( 1 ↑ 𝑘 ) )  =  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( 𝑁 C 𝑘 ) | 
						
							| 16 | 6 15 | eqtrdi | ⊢ ( 𝑁  ∈  ℕ0  →  ( 2 ↑ 𝑁 )  =  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( 𝑁 C 𝑘 ) ) |