Step |
Hyp |
Ref |
Expression |
1 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
2 |
1
|
oveq1i |
⊢ ( 2 ↑ 𝑁 ) = ( ( 1 + 1 ) ↑ 𝑁 ) |
3 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
4 |
|
binom1p |
⊢ ( ( 1 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( 1 + 1 ) ↑ 𝑁 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( 1 ↑ 𝑘 ) ) ) |
5 |
3 4
|
mpan |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 1 + 1 ) ↑ 𝑁 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( 1 ↑ 𝑘 ) ) ) |
6 |
2 5
|
eqtrid |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 ↑ 𝑁 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( 1 ↑ 𝑘 ) ) ) |
7 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ℤ ) |
8 |
|
1exp |
⊢ ( 𝑘 ∈ ℤ → ( 1 ↑ 𝑘 ) = 1 ) |
9 |
7 8
|
syl |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → ( 1 ↑ 𝑘 ) = 1 ) |
10 |
9
|
oveq2d |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → ( ( 𝑁 C 𝑘 ) · ( 1 ↑ 𝑘 ) ) = ( ( 𝑁 C 𝑘 ) · 1 ) ) |
11 |
|
bccl2 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → ( 𝑁 C 𝑘 ) ∈ ℕ ) |
12 |
11
|
nncnd |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → ( 𝑁 C 𝑘 ) ∈ ℂ ) |
13 |
12
|
mulid1d |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → ( ( 𝑁 C 𝑘 ) · 1 ) = ( 𝑁 C 𝑘 ) ) |
14 |
10 13
|
eqtrd |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → ( ( 𝑁 C 𝑘 ) · ( 1 ↑ 𝑘 ) ) = ( 𝑁 C 𝑘 ) ) |
15 |
14
|
sumeq2i |
⊢ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( 1 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝑁 C 𝑘 ) |
16 |
6 15
|
eqtrdi |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 ↑ 𝑁 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝑁 C 𝑘 ) ) |