| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( 𝐴 + 𝐵 ) = ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) + 𝐵 ) ) |
| 2 |
1
|
oveq1d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( ( 𝐴 + 𝐵 ) ↑ 2 ) = ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) + 𝐵 ) ↑ 2 ) ) |
| 3 |
|
oveq1 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( 𝐴 ↑ 2 ) = ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) ) |
| 4 |
|
oveq1 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( 𝐴 · 𝐵 ) = ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · 𝐵 ) ) |
| 5 |
4
|
oveq2d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( 2 · ( 𝐴 · 𝐵 ) ) = ( 2 · ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · 𝐵 ) ) ) |
| 6 |
3 5
|
oveq12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) = ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) + ( 2 · ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · 𝐵 ) ) ) ) |
| 7 |
6
|
oveq1d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) = ( ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) + ( 2 · ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) ) |
| 8 |
2 7
|
eqeq12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( ( ( 𝐴 + 𝐵 ) ↑ 2 ) = ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) ↔ ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) + 𝐵 ) ↑ 2 ) = ( ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) + ( 2 · ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) ) ) |
| 9 |
|
oveq2 |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) + 𝐵 ) = ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) + if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) |
| 10 |
9
|
oveq1d |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) + 𝐵 ) ↑ 2 ) = ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) + if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ↑ 2 ) ) |
| 11 |
|
oveq2 |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · 𝐵 ) = ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) |
| 12 |
11
|
oveq2d |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( 2 · ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · 𝐵 ) ) = ( 2 · ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) ) |
| 13 |
12
|
oveq2d |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) + ( 2 · ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · 𝐵 ) ) ) = ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) + ( 2 · ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) ) ) |
| 14 |
|
oveq1 |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( 𝐵 ↑ 2 ) = ( if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ↑ 2 ) ) |
| 15 |
13 14
|
oveq12d |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) + ( 2 · ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) = ( ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) + ( 2 · ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) ) + ( if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ↑ 2 ) ) ) |
| 16 |
10 15
|
eqeq12d |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) + 𝐵 ) ↑ 2 ) = ( ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) + ( 2 · ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) ↔ ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) + if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ↑ 2 ) = ( ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) + ( 2 · ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) ) + ( if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ↑ 2 ) ) ) ) |
| 17 |
|
0cn |
⊢ 0 ∈ ℂ |
| 18 |
17
|
elimel |
⊢ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ∈ ℂ |
| 19 |
17
|
elimel |
⊢ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ∈ ℂ |
| 20 |
18 19
|
binom2i |
⊢ ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) + if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ↑ 2 ) = ( ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) + ( 2 · ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) ) + ( if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ↑ 2 ) ) |
| 21 |
8 16 20
|
dedth2h |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) ↑ 2 ) = ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) ) |