Step |
Hyp |
Ref |
Expression |
1 |
|
negcl |
⊢ ( 𝐵 ∈ ℂ → - 𝐵 ∈ ℂ ) |
2 |
|
binom2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ - 𝐵 ∈ ℂ ) → ( ( 𝐴 + - 𝐵 ) ↑ 2 ) = ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · - 𝐵 ) ) ) + ( - 𝐵 ↑ 2 ) ) ) |
3 |
1 2
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + - 𝐵 ) ↑ 2 ) = ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · - 𝐵 ) ) ) + ( - 𝐵 ↑ 2 ) ) ) |
4 |
|
negsub |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) |
5 |
4
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + - 𝐵 ) ↑ 2 ) = ( ( 𝐴 − 𝐵 ) ↑ 2 ) ) |
6 |
3 5
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · - 𝐵 ) ) ) + ( - 𝐵 ↑ 2 ) ) = ( ( 𝐴 − 𝐵 ) ↑ 2 ) ) |
7 |
|
mulneg2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · - 𝐵 ) = - ( 𝐴 · 𝐵 ) ) |
8 |
7
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · ( 𝐴 · - 𝐵 ) ) = ( 2 · - ( 𝐴 · 𝐵 ) ) ) |
9 |
|
2cn |
⊢ 2 ∈ ℂ |
10 |
|
mulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
11 |
|
mulneg2 |
⊢ ( ( 2 ∈ ℂ ∧ ( 𝐴 · 𝐵 ) ∈ ℂ ) → ( 2 · - ( 𝐴 · 𝐵 ) ) = - ( 2 · ( 𝐴 · 𝐵 ) ) ) |
12 |
9 10 11
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · - ( 𝐴 · 𝐵 ) ) = - ( 2 · ( 𝐴 · 𝐵 ) ) ) |
13 |
8 12
|
eqtr2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → - ( 2 · ( 𝐴 · 𝐵 ) ) = ( 2 · ( 𝐴 · - 𝐵 ) ) ) |
14 |
13
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) + - ( 2 · ( 𝐴 · 𝐵 ) ) ) = ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · - 𝐵 ) ) ) ) |
15 |
|
sqcl |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
16 |
15
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
17 |
|
mulcl |
⊢ ( ( 2 ∈ ℂ ∧ ( 𝐴 · 𝐵 ) ∈ ℂ ) → ( 2 · ( 𝐴 · 𝐵 ) ) ∈ ℂ ) |
18 |
9 10 17
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · ( 𝐴 · 𝐵 ) ) ∈ ℂ ) |
19 |
16 18
|
negsubd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) + - ( 2 · ( 𝐴 · 𝐵 ) ) ) = ( ( 𝐴 ↑ 2 ) − ( 2 · ( 𝐴 · 𝐵 ) ) ) ) |
20 |
14 19
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · - 𝐵 ) ) ) = ( ( 𝐴 ↑ 2 ) − ( 2 · ( 𝐴 · 𝐵 ) ) ) ) |
21 |
|
sqneg |
⊢ ( 𝐵 ∈ ℂ → ( - 𝐵 ↑ 2 ) = ( 𝐵 ↑ 2 ) ) |
22 |
21
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 𝐵 ↑ 2 ) = ( 𝐵 ↑ 2 ) ) |
23 |
20 22
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · - 𝐵 ) ) ) + ( - 𝐵 ↑ 2 ) ) = ( ( ( 𝐴 ↑ 2 ) − ( 2 · ( 𝐴 · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) ) |
24 |
6 23
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) ↑ 2 ) = ( ( ( 𝐴 ↑ 2 ) − ( 2 · ( 𝐴 · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) ) |