Metamath Proof Explorer
Description: Expand the square of a subtraction. (Contributed by Scott Fenton, 13-Jun-2013)
|
|
Ref |
Expression |
|
Hypotheses |
binom2subi.1 |
⊢ 𝐴 ∈ ℂ |
|
|
binom2subi.2 |
⊢ 𝐵 ∈ ℂ |
|
Assertion |
binom2subi |
⊢ ( ( 𝐴 − 𝐵 ) ↑ 2 ) = ( ( ( 𝐴 ↑ 2 ) − ( 2 · ( 𝐴 · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
binom2subi.1 |
⊢ 𝐴 ∈ ℂ |
2 |
|
binom2subi.2 |
⊢ 𝐵 ∈ ℂ |
3 |
|
binom2sub |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) ↑ 2 ) = ( ( ( 𝐴 ↑ 2 ) − ( 2 · ( 𝐴 · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) ) |
4 |
1 2 3
|
mp2an |
⊢ ( ( 𝐴 − 𝐵 ) ↑ 2 ) = ( ( ( 𝐴 ↑ 2 ) − ( 2 · ( 𝐴 · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) |