| Step |
Hyp |
Ref |
Expression |
| 1 |
|
binomlem.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 2 |
|
binomlem.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 3 |
|
binomlem.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 4 |
|
binomlem.4 |
⊢ ( 𝜓 → ( ( 𝐴 + 𝐵 ) ↑ 𝑁 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 5 |
4
|
adantl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐴 + 𝐵 ) ↑ 𝑁 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 6 |
5
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝐴 + 𝐵 ) ↑ 𝑁 ) · 𝐴 ) = ( Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) · 𝐴 ) ) |
| 7 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... 𝑁 ) ∈ Fin ) |
| 8 |
|
fzelp1 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) |
| 9 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) → 𝑘 ∈ ℤ ) |
| 10 |
|
bccl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℤ ) → ( 𝑁 C 𝑘 ) ∈ ℕ0 ) |
| 11 |
3 9 10
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( 𝑁 C 𝑘 ) ∈ ℕ0 ) |
| 12 |
11
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( 𝑁 C 𝑘 ) ∈ ℂ ) |
| 13 |
8 12
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑁 C 𝑘 ) ∈ ℂ ) |
| 14 |
|
fznn0sub |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → ( 𝑁 − 𝑘 ) ∈ ℕ0 ) |
| 15 |
|
expcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑁 − 𝑘 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) ∈ ℂ ) |
| 16 |
1 14 15
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) ∈ ℂ ) |
| 17 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) → 𝑘 ∈ ℕ0 ) |
| 18 |
|
expcl |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐵 ↑ 𝑘 ) ∈ ℂ ) |
| 19 |
2 17 18
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( 𝐵 ↑ 𝑘 ) ∈ ℂ ) |
| 20 |
8 19
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝐵 ↑ 𝑘 ) ∈ ℂ ) |
| 21 |
16 20
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ∈ ℂ ) |
| 22 |
13 21
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ∈ ℂ ) |
| 23 |
7 1 22
|
fsummulc1 |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) · 𝐴 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) · 𝐴 ) ) |
| 24 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) |
| 25 |
13 21 24
|
mulassd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) · 𝐴 ) = ( ( 𝑁 C 𝑘 ) · ( ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) · 𝐴 ) ) ) |
| 26 |
3
|
nn0cnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑁 ∈ ℂ ) |
| 28 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 1 ∈ ℂ ) |
| 29 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ℤ ) |
| 30 |
29
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℤ ) |
| 31 |
30
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℂ ) |
| 32 |
27 28 31
|
addsubd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑁 + 1 ) − 𝑘 ) = ( ( 𝑁 − 𝑘 ) + 1 ) ) |
| 33 |
32
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) = ( 𝐴 ↑ ( ( 𝑁 − 𝑘 ) + 1 ) ) ) |
| 34 |
|
expp1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑁 − 𝑘 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( ( 𝑁 − 𝑘 ) + 1 ) ) = ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · 𝐴 ) ) |
| 35 |
1 14 34
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝐴 ↑ ( ( 𝑁 − 𝑘 ) + 1 ) ) = ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · 𝐴 ) ) |
| 36 |
33 35
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) = ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · 𝐴 ) ) |
| 37 |
36
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) = ( ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · 𝐴 ) · ( 𝐵 ↑ 𝑘 ) ) ) |
| 38 |
16 24 20
|
mul32d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · 𝐴 ) · ( 𝐵 ↑ 𝑘 ) ) = ( ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) · 𝐴 ) ) |
| 39 |
37 38
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) = ( ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) · 𝐴 ) ) |
| 40 |
39
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) = ( ( 𝑁 C 𝑘 ) · ( ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) · 𝐴 ) ) ) |
| 41 |
25 40
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) · 𝐴 ) = ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 42 |
41
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) · 𝐴 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 43 |
|
fzssp1 |
⊢ ( 0 ... 𝑁 ) ⊆ ( 0 ... ( 𝑁 + 1 ) ) |
| 44 |
43
|
a1i |
⊢ ( 𝜑 → ( 0 ... 𝑁 ) ⊆ ( 0 ... ( 𝑁 + 1 ) ) ) |
| 45 |
|
fznn0sub |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) → ( ( 𝑁 + 1 ) − 𝑘 ) ∈ ℕ0 ) |
| 46 |
|
expcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( 𝑁 + 1 ) − 𝑘 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) ∈ ℂ ) |
| 47 |
1 45 46
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) ∈ ℂ ) |
| 48 |
47 19
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ∈ ℂ ) |
| 49 |
12 48
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ∈ ℂ ) |
| 50 |
8 49
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ∈ ℂ ) |
| 51 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 + 1 ) ) ∖ ( 0 ... 𝑁 ) ) ) → 𝑁 ∈ ℕ0 ) |
| 52 |
|
eldifi |
⊢ ( 𝑘 ∈ ( ( 0 ... ( 𝑁 + 1 ) ) ∖ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) |
| 53 |
52 9
|
syl |
⊢ ( 𝑘 ∈ ( ( 0 ... ( 𝑁 + 1 ) ) ∖ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℤ ) |
| 54 |
53
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 + 1 ) ) ∖ ( 0 ... 𝑁 ) ) ) → 𝑘 ∈ ℤ ) |
| 55 |
|
eldifn |
⊢ ( 𝑘 ∈ ( ( 0 ... ( 𝑁 + 1 ) ) ∖ ( 0 ... 𝑁 ) ) → ¬ 𝑘 ∈ ( 0 ... 𝑁 ) ) |
| 56 |
55
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 + 1 ) ) ∖ ( 0 ... 𝑁 ) ) ) → ¬ 𝑘 ∈ ( 0 ... 𝑁 ) ) |
| 57 |
|
bcval3 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑁 C 𝑘 ) = 0 ) |
| 58 |
51 54 56 57
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 + 1 ) ) ∖ ( 0 ... 𝑁 ) ) ) → ( 𝑁 C 𝑘 ) = 0 ) |
| 59 |
58
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 + 1 ) ) ∖ ( 0 ... 𝑁 ) ) ) → ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) = ( 0 · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 60 |
48
|
mul02d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( 0 · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) = 0 ) |
| 61 |
52 60
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 + 1 ) ) ∖ ( 0 ... 𝑁 ) ) ) → ( 0 · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) = 0 ) |
| 62 |
59 61
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 + 1 ) ) ∖ ( 0 ... 𝑁 ) ) ) → ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) = 0 ) |
| 63 |
|
fzssuz |
⊢ ( 0 ... ( 𝑁 + 1 ) ) ⊆ ( ℤ≥ ‘ 0 ) |
| 64 |
63
|
a1i |
⊢ ( 𝜑 → ( 0 ... ( 𝑁 + 1 ) ) ⊆ ( ℤ≥ ‘ 0 ) ) |
| 65 |
44 50 62 64
|
sumss |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 66 |
23 42 65
|
3eqtrd |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) · 𝐴 ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 67 |
66
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) · 𝐴 ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 68 |
6 67
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝐴 + 𝐵 ) ↑ 𝑁 ) · 𝐴 ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 69 |
4
|
oveq1d |
⊢ ( 𝜓 → ( ( ( 𝐴 + 𝐵 ) ↑ 𝑁 ) · 𝐵 ) = ( Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) · 𝐵 ) ) |
| 70 |
7 2 22
|
fsummulc1 |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) · 𝐵 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) · 𝐵 ) ) |
| 71 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 72 |
|
0z |
⊢ 0 ∈ ℤ |
| 73 |
72
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 74 |
3
|
nn0zd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 75 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝐵 ∈ ℂ ) |
| 76 |
22 75
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) · 𝐵 ) ∈ ℂ ) |
| 77 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑗 − 1 ) → ( 𝑁 C 𝑘 ) = ( 𝑁 C ( 𝑗 − 1 ) ) ) |
| 78 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑗 − 1 ) → ( 𝑁 − 𝑘 ) = ( 𝑁 − ( 𝑗 − 1 ) ) ) |
| 79 |
78
|
oveq2d |
⊢ ( 𝑘 = ( 𝑗 − 1 ) → ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) = ( 𝐴 ↑ ( 𝑁 − ( 𝑗 − 1 ) ) ) ) |
| 80 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑗 − 1 ) → ( 𝐵 ↑ 𝑘 ) = ( 𝐵 ↑ ( 𝑗 − 1 ) ) ) |
| 81 |
79 80
|
oveq12d |
⊢ ( 𝑘 = ( 𝑗 − 1 ) → ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) = ( ( 𝐴 ↑ ( 𝑁 − ( 𝑗 − 1 ) ) ) · ( 𝐵 ↑ ( 𝑗 − 1 ) ) ) ) |
| 82 |
77 81
|
oveq12d |
⊢ ( 𝑘 = ( 𝑗 − 1 ) → ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) = ( ( 𝑁 C ( 𝑗 − 1 ) ) · ( ( 𝐴 ↑ ( 𝑁 − ( 𝑗 − 1 ) ) ) · ( 𝐵 ↑ ( 𝑗 − 1 ) ) ) ) ) |
| 83 |
82
|
oveq1d |
⊢ ( 𝑘 = ( 𝑗 − 1 ) → ( ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) · 𝐵 ) = ( ( ( 𝑁 C ( 𝑗 − 1 ) ) · ( ( 𝐴 ↑ ( 𝑁 − ( 𝑗 − 1 ) ) ) · ( 𝐵 ↑ ( 𝑗 − 1 ) ) ) ) · 𝐵 ) ) |
| 84 |
71 73 74 76 83
|
fsumshft |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) · 𝐵 ) = Σ 𝑗 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ( ( ( 𝑁 C ( 𝑗 − 1 ) ) · ( ( 𝐴 ↑ ( 𝑁 − ( 𝑗 − 1 ) ) ) · ( 𝐵 ↑ ( 𝑗 − 1 ) ) ) ) · 𝐵 ) ) |
| 85 |
|
oveq1 |
⊢ ( 𝑗 = 𝑘 → ( 𝑗 − 1 ) = ( 𝑘 − 1 ) ) |
| 86 |
85
|
oveq2d |
⊢ ( 𝑗 = 𝑘 → ( 𝑁 C ( 𝑗 − 1 ) ) = ( 𝑁 C ( 𝑘 − 1 ) ) ) |
| 87 |
85
|
oveq2d |
⊢ ( 𝑗 = 𝑘 → ( 𝑁 − ( 𝑗 − 1 ) ) = ( 𝑁 − ( 𝑘 − 1 ) ) ) |
| 88 |
87
|
oveq2d |
⊢ ( 𝑗 = 𝑘 → ( 𝐴 ↑ ( 𝑁 − ( 𝑗 − 1 ) ) ) = ( 𝐴 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) ) |
| 89 |
85
|
oveq2d |
⊢ ( 𝑗 = 𝑘 → ( 𝐵 ↑ ( 𝑗 − 1 ) ) = ( 𝐵 ↑ ( 𝑘 − 1 ) ) ) |
| 90 |
88 89
|
oveq12d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝐴 ↑ ( 𝑁 − ( 𝑗 − 1 ) ) ) · ( 𝐵 ↑ ( 𝑗 − 1 ) ) ) = ( ( 𝐴 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐵 ↑ ( 𝑘 − 1 ) ) ) ) |
| 91 |
86 90
|
oveq12d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑁 C ( 𝑗 − 1 ) ) · ( ( 𝐴 ↑ ( 𝑁 − ( 𝑗 − 1 ) ) ) · ( 𝐵 ↑ ( 𝑗 − 1 ) ) ) ) = ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( 𝐴 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐵 ↑ ( 𝑘 − 1 ) ) ) ) ) |
| 92 |
91
|
oveq1d |
⊢ ( 𝑗 = 𝑘 → ( ( ( 𝑁 C ( 𝑗 − 1 ) ) · ( ( 𝐴 ↑ ( 𝑁 − ( 𝑗 − 1 ) ) ) · ( 𝐵 ↑ ( 𝑗 − 1 ) ) ) ) · 𝐵 ) = ( ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( 𝐴 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐵 ↑ ( 𝑘 − 1 ) ) ) ) · 𝐵 ) ) |
| 93 |
92
|
cbvsumv |
⊢ Σ 𝑗 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ( ( ( 𝑁 C ( 𝑗 − 1 ) ) · ( ( 𝐴 ↑ ( 𝑁 − ( 𝑗 − 1 ) ) ) · ( 𝐵 ↑ ( 𝑗 − 1 ) ) ) ) · 𝐵 ) = Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ( ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( 𝐴 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐵 ↑ ( 𝑘 − 1 ) ) ) ) · 𝐵 ) |
| 94 |
84 93
|
eqtrdi |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) · 𝐵 ) = Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ( ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( 𝐴 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐵 ↑ ( 𝑘 − 1 ) ) ) ) · 𝐵 ) ) |
| 95 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) → 𝑁 ∈ ℂ ) |
| 96 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) → 𝑘 ∈ ℤ ) |
| 97 |
96
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) → 𝑘 ∈ ℤ ) |
| 98 |
97
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) → 𝑘 ∈ ℂ ) |
| 99 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) → 1 ∈ ℂ ) |
| 100 |
95 98 99
|
subsub3d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) → ( 𝑁 − ( 𝑘 − 1 ) ) = ( ( 𝑁 + 1 ) − 𝑘 ) ) |
| 101 |
100
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) → ( 𝐴 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) = ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) ) |
| 102 |
101
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) → ( ( 𝐴 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐵 ↑ ( 𝑘 − 1 ) ) ) = ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ ( 𝑘 − 1 ) ) ) ) |
| 103 |
102
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) → ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( 𝐴 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐵 ↑ ( 𝑘 − 1 ) ) ) ) = ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ ( 𝑘 − 1 ) ) ) ) ) |
| 104 |
103
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) → ( ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( 𝐴 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐵 ↑ ( 𝑘 − 1 ) ) ) ) · 𝐵 ) = ( ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ ( 𝑘 − 1 ) ) ) ) · 𝐵 ) ) |
| 105 |
|
fzp1ss |
⊢ ( 0 ∈ ℤ → ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ⊆ ( 0 ... ( 𝑁 + 1 ) ) ) |
| 106 |
72 105
|
ax-mp |
⊢ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ⊆ ( 0 ... ( 𝑁 + 1 ) ) |
| 107 |
106
|
sseli |
⊢ ( 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) → 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) |
| 108 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → 𝑘 ∈ ℤ ) |
| 109 |
|
peano2zm |
⊢ ( 𝑘 ∈ ℤ → ( 𝑘 − 1 ) ∈ ℤ ) |
| 110 |
108 109
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( 𝑘 − 1 ) ∈ ℤ ) |
| 111 |
|
bccl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑘 − 1 ) ∈ ℤ ) → ( 𝑁 C ( 𝑘 − 1 ) ) ∈ ℕ0 ) |
| 112 |
3 110 111
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( 𝑁 C ( 𝑘 − 1 ) ) ∈ ℕ0 ) |
| 113 |
112
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( 𝑁 C ( 𝑘 − 1 ) ) ∈ ℂ ) |
| 114 |
107 113
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) → ( 𝑁 C ( 𝑘 − 1 ) ) ∈ ℂ ) |
| 115 |
107 47
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) → ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) ∈ ℂ ) |
| 116 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) → 𝐵 ∈ ℂ ) |
| 117 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝑁 + 1 ) ) → 𝑘 ∈ ℕ ) |
| 118 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
| 119 |
118
|
oveq1i |
⊢ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) = ( 1 ... ( 𝑁 + 1 ) ) |
| 120 |
117 119
|
eleq2s |
⊢ ( 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) → 𝑘 ∈ ℕ ) |
| 121 |
120
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) → 𝑘 ∈ ℕ ) |
| 122 |
|
nnm1nn0 |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 − 1 ) ∈ ℕ0 ) |
| 123 |
121 122
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) → ( 𝑘 − 1 ) ∈ ℕ0 ) |
| 124 |
116 123
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) → ( 𝐵 ↑ ( 𝑘 − 1 ) ) ∈ ℂ ) |
| 125 |
115 124
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) → ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ ( 𝑘 − 1 ) ) ) ∈ ℂ ) |
| 126 |
114 125 116
|
mulassd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) → ( ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ ( 𝑘 − 1 ) ) ) ) · 𝐵 ) = ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ ( 𝑘 − 1 ) ) ) · 𝐵 ) ) ) |
| 127 |
115 124 116
|
mulassd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) → ( ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ ( 𝑘 − 1 ) ) ) · 𝐵 ) = ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( ( 𝐵 ↑ ( 𝑘 − 1 ) ) · 𝐵 ) ) ) |
| 128 |
|
expm1t |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ ) → ( 𝐵 ↑ 𝑘 ) = ( ( 𝐵 ↑ ( 𝑘 − 1 ) ) · 𝐵 ) ) |
| 129 |
2 120 128
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) → ( 𝐵 ↑ 𝑘 ) = ( ( 𝐵 ↑ ( 𝑘 − 1 ) ) · 𝐵 ) ) |
| 130 |
129
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) → ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) = ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( ( 𝐵 ↑ ( 𝑘 − 1 ) ) · 𝐵 ) ) ) |
| 131 |
127 130
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) → ( ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ ( 𝑘 − 1 ) ) ) · 𝐵 ) = ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) |
| 132 |
131
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) → ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ ( 𝑘 − 1 ) ) ) · 𝐵 ) ) = ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 133 |
104 126 132
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) → ( ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( 𝐴 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐵 ↑ ( 𝑘 − 1 ) ) ) ) · 𝐵 ) = ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 134 |
133
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ( ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( 𝐴 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐵 ↑ ( 𝑘 − 1 ) ) ) ) · 𝐵 ) = Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 135 |
106
|
a1i |
⊢ ( 𝜑 → ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ⊆ ( 0 ... ( 𝑁 + 1 ) ) ) |
| 136 |
113 48
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ∈ ℂ ) |
| 137 |
107 136
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) → ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ∈ ℂ ) |
| 138 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 + 1 ) ) ∖ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) ) → 𝑁 ∈ ℕ0 ) |
| 139 |
|
eldifi |
⊢ ( 𝑘 ∈ ( ( 0 ... ( 𝑁 + 1 ) ) ∖ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) → 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) |
| 140 |
139
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 + 1 ) ) ∖ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) ) → 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) |
| 141 |
140 9
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 + 1 ) ) ∖ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) ) → 𝑘 ∈ ℤ ) |
| 142 |
141 109
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 + 1 ) ) ∖ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) ) → ( 𝑘 − 1 ) ∈ ℤ ) |
| 143 |
|
eldifn |
⊢ ( 𝑘 ∈ ( ( 0 ... ( 𝑁 + 1 ) ) ∖ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) → ¬ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) |
| 144 |
143
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 + 1 ) ) ∖ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) ) → ¬ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) |
| 145 |
72
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 + 1 ) ) ∖ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) ) → 0 ∈ ℤ ) |
| 146 |
138
|
nn0zd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 + 1 ) ) ∖ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) ) → 𝑁 ∈ ℤ ) |
| 147 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 + 1 ) ) ∖ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) ) → 1 ∈ ℤ ) |
| 148 |
|
fzaddel |
⊢ ( ( ( 0 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝑘 − 1 ) ∈ ℤ ∧ 1 ∈ ℤ ) ) → ( ( 𝑘 − 1 ) ∈ ( 0 ... 𝑁 ) ↔ ( ( 𝑘 − 1 ) + 1 ) ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) ) |
| 149 |
145 146 142 147 148
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 + 1 ) ) ∖ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) ) → ( ( 𝑘 − 1 ) ∈ ( 0 ... 𝑁 ) ↔ ( ( 𝑘 − 1 ) + 1 ) ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) ) |
| 150 |
141
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 + 1 ) ) ∖ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) ) → 𝑘 ∈ ℂ ) |
| 151 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 152 |
|
npcan |
⊢ ( ( 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑘 − 1 ) + 1 ) = 𝑘 ) |
| 153 |
150 151 152
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 + 1 ) ) ∖ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) ) → ( ( 𝑘 − 1 ) + 1 ) = 𝑘 ) |
| 154 |
153
|
eleq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 + 1 ) ) ∖ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) ) → ( ( ( 𝑘 − 1 ) + 1 ) ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ↔ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) ) |
| 155 |
149 154
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 + 1 ) ) ∖ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) ) → ( ( 𝑘 − 1 ) ∈ ( 0 ... 𝑁 ) ↔ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) ) |
| 156 |
144 155
|
mtbird |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 + 1 ) ) ∖ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) ) → ¬ ( 𝑘 − 1 ) ∈ ( 0 ... 𝑁 ) ) |
| 157 |
|
bcval3 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑘 − 1 ) ∈ ℤ ∧ ¬ ( 𝑘 − 1 ) ∈ ( 0 ... 𝑁 ) ) → ( 𝑁 C ( 𝑘 − 1 ) ) = 0 ) |
| 158 |
138 142 156 157
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 + 1 ) ) ∖ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) ) → ( 𝑁 C ( 𝑘 − 1 ) ) = 0 ) |
| 159 |
158
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 + 1 ) ) ∖ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) ) → ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) = ( 0 · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 160 |
139 60
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 + 1 ) ) ∖ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) ) → ( 0 · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) = 0 ) |
| 161 |
159 160
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 + 1 ) ) ∖ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) ) → ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) = 0 ) |
| 162 |
135 137 161 64
|
sumss |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 163 |
94 134 162
|
3eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) · 𝐵 ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 164 |
70 163
|
eqtrd |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) · 𝐵 ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 165 |
69 164
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝐴 + 𝐵 ) ↑ 𝑁 ) · 𝐵 ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 166 |
68 165
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( ( 𝐴 + 𝐵 ) ↑ 𝑁 ) · 𝐴 ) + ( ( ( 𝐴 + 𝐵 ) ↑ 𝑁 ) · 𝐵 ) ) = ( Σ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) + Σ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) ) |
| 167 |
1 2
|
addcld |
⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ ℂ ) |
| 168 |
167 3
|
expp1d |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) ↑ ( 𝑁 + 1 ) ) = ( ( ( 𝐴 + 𝐵 ) ↑ 𝑁 ) · ( 𝐴 + 𝐵 ) ) ) |
| 169 |
167 3
|
expcld |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) ↑ 𝑁 ) ∈ ℂ ) |
| 170 |
169 1 2
|
adddid |
⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐵 ) ↑ 𝑁 ) · ( 𝐴 + 𝐵 ) ) = ( ( ( ( 𝐴 + 𝐵 ) ↑ 𝑁 ) · 𝐴 ) + ( ( ( 𝐴 + 𝐵 ) ↑ 𝑁 ) · 𝐵 ) ) ) |
| 171 |
168 170
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) ↑ ( 𝑁 + 1 ) ) = ( ( ( ( 𝐴 + 𝐵 ) ↑ 𝑁 ) · 𝐴 ) + ( ( ( 𝐴 + 𝐵 ) ↑ 𝑁 ) · 𝐵 ) ) ) |
| 172 |
171
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐴 + 𝐵 ) ↑ ( 𝑁 + 1 ) ) = ( ( ( ( 𝐴 + 𝐵 ) ↑ 𝑁 ) · 𝐴 ) + ( ( ( 𝐴 + 𝐵 ) ↑ 𝑁 ) · 𝐵 ) ) ) |
| 173 |
|
bcpasc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℤ ) → ( ( 𝑁 C 𝑘 ) + ( 𝑁 C ( 𝑘 − 1 ) ) ) = ( ( 𝑁 + 1 ) C 𝑘 ) ) |
| 174 |
3 9 173
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( ( 𝑁 C 𝑘 ) + ( 𝑁 C ( 𝑘 − 1 ) ) ) = ( ( 𝑁 + 1 ) C 𝑘 ) ) |
| 175 |
174
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( ( ( 𝑁 C 𝑘 ) + ( 𝑁 C ( 𝑘 − 1 ) ) ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) = ( ( ( 𝑁 + 1 ) C 𝑘 ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 176 |
12 113 48
|
adddird |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( ( ( 𝑁 C 𝑘 ) + ( 𝑁 C ( 𝑘 − 1 ) ) ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) = ( ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) + ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) ) |
| 177 |
175 176
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( ( ( 𝑁 + 1 ) C 𝑘 ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) = ( ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) + ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) ) |
| 178 |
177
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( ( ( 𝑁 + 1 ) C 𝑘 ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) + ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) ) |
| 179 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... ( 𝑁 + 1 ) ) ∈ Fin ) |
| 180 |
179 49 136
|
fsumadd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) + ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) = ( Σ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) + Σ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) ) |
| 181 |
178 180
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( ( ( 𝑁 + 1 ) C 𝑘 ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) = ( Σ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) + Σ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) ) |
| 182 |
181
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → Σ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( ( ( 𝑁 + 1 ) C 𝑘 ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) = ( Σ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( ( 𝑁 C 𝑘 ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) + Σ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) ) |
| 183 |
166 172 182
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐴 + 𝐵 ) ↑ ( 𝑁 + 1 ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( ( ( 𝑁 + 1 ) C 𝑘 ) · ( ( 𝐴 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |