Step |
Hyp |
Ref |
Expression |
1 |
|
birthday.s |
⊢ 𝑆 = { 𝑓 ∣ 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... 𝑁 ) } |
2 |
|
birthday.t |
⊢ 𝑇 = { 𝑓 ∣ 𝑓 : ( 1 ... 𝐾 ) –1-1→ ( 1 ... 𝑁 ) } |
3 |
|
birthday.k |
⊢ 𝐾 = ; 2 3 |
4 |
|
birthday.n |
⊢ 𝑁 = ; ; 3 6 5 |
5 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
6 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
7 |
5 6
|
deccl |
⊢ ; 2 3 ∈ ℕ0 |
8 |
3 7
|
eqeltri |
⊢ 𝐾 ∈ ℕ0 |
9 |
|
6nn0 |
⊢ 6 ∈ ℕ0 |
10 |
6 9
|
deccl |
⊢ ; 3 6 ∈ ℕ0 |
11 |
|
5nn |
⊢ 5 ∈ ℕ |
12 |
10 11
|
decnncl |
⊢ ; ; 3 6 5 ∈ ℕ |
13 |
4 12
|
eqeltri |
⊢ 𝑁 ∈ ℕ |
14 |
1 2
|
birthdaylem3 |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) → ( ( ♯ ‘ 𝑇 ) / ( ♯ ‘ 𝑆 ) ) ≤ ( exp ‘ - ( ( ( ( 𝐾 ↑ 2 ) − 𝐾 ) / 2 ) / 𝑁 ) ) ) |
15 |
8 13 14
|
mp2an |
⊢ ( ( ♯ ‘ 𝑇 ) / ( ♯ ‘ 𝑆 ) ) ≤ ( exp ‘ - ( ( ( ( 𝐾 ↑ 2 ) − 𝐾 ) / 2 ) / 𝑁 ) ) |
16 |
|
log2ub |
⊢ ( log ‘ 2 ) < ( ; ; 2 5 3 / ; ; 3 6 5 ) |
17 |
8
|
nn0cni |
⊢ 𝐾 ∈ ℂ |
18 |
17
|
sqvali |
⊢ ( 𝐾 ↑ 2 ) = ( 𝐾 · 𝐾 ) |
19 |
17
|
mulid1i |
⊢ ( 𝐾 · 1 ) = 𝐾 |
20 |
19
|
eqcomi |
⊢ 𝐾 = ( 𝐾 · 1 ) |
21 |
18 20
|
oveq12i |
⊢ ( ( 𝐾 ↑ 2 ) − 𝐾 ) = ( ( 𝐾 · 𝐾 ) − ( 𝐾 · 1 ) ) |
22 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
23 |
17 17 22
|
subdii |
⊢ ( 𝐾 · ( 𝐾 − 1 ) ) = ( ( 𝐾 · 𝐾 ) − ( 𝐾 · 1 ) ) |
24 |
21 23
|
eqtr4i |
⊢ ( ( 𝐾 ↑ 2 ) − 𝐾 ) = ( 𝐾 · ( 𝐾 − 1 ) ) |
25 |
24
|
oveq1i |
⊢ ( ( ( 𝐾 ↑ 2 ) − 𝐾 ) / 2 ) = ( ( 𝐾 · ( 𝐾 − 1 ) ) / 2 ) |
26 |
17 22
|
subcli |
⊢ ( 𝐾 − 1 ) ∈ ℂ |
27 |
|
2cn |
⊢ 2 ∈ ℂ |
28 |
|
2ne0 |
⊢ 2 ≠ 0 |
29 |
17 26 27 28
|
divassi |
⊢ ( ( 𝐾 · ( 𝐾 − 1 ) ) / 2 ) = ( 𝐾 · ( ( 𝐾 − 1 ) / 2 ) ) |
30 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
31 |
5 5
|
deccl |
⊢ ; 2 2 ∈ ℕ0 |
32 |
31
|
nn0cni |
⊢ ; 2 2 ∈ ℂ |
33 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
34 |
|
eqid |
⊢ ; 2 2 = ; 2 2 |
35 |
5 5 33 34
|
decsuc |
⊢ ( ; 2 2 + 1 ) = ; 2 3 |
36 |
3 35
|
eqtr4i |
⊢ 𝐾 = ( ; 2 2 + 1 ) |
37 |
32 22 36
|
mvrraddi |
⊢ ( 𝐾 − 1 ) = ; 2 2 |
38 |
37
|
oveq1i |
⊢ ( ( 𝐾 − 1 ) / 2 ) = ( ; 2 2 / 2 ) |
39 |
5
|
11multnc |
⊢ ( 2 · ; 1 1 ) = ; 2 2 |
40 |
30 30
|
deccl |
⊢ ; 1 1 ∈ ℕ0 |
41 |
40
|
nn0cni |
⊢ ; 1 1 ∈ ℂ |
42 |
32 27 41 28
|
divmuli |
⊢ ( ( ; 2 2 / 2 ) = ; 1 1 ↔ ( 2 · ; 1 1 ) = ; 2 2 ) |
43 |
39 42
|
mpbir |
⊢ ( ; 2 2 / 2 ) = ; 1 1 |
44 |
38 43
|
eqtri |
⊢ ( ( 𝐾 − 1 ) / 2 ) = ; 1 1 |
45 |
19 3
|
eqtri |
⊢ ( 𝐾 · 1 ) = ; 2 3 |
46 |
|
3p2e5 |
⊢ ( 3 + 2 ) = 5 |
47 |
5 6 5 45 46
|
decaddi |
⊢ ( ( 𝐾 · 1 ) + 2 ) = ; 2 5 |
48 |
8 30 30 44 6 5 47 45
|
decmul2c |
⊢ ( 𝐾 · ( ( 𝐾 − 1 ) / 2 ) ) = ; ; 2 5 3 |
49 |
25 29 48
|
3eqtri |
⊢ ( ( ( 𝐾 ↑ 2 ) − 𝐾 ) / 2 ) = ; ; 2 5 3 |
50 |
49 4
|
oveq12i |
⊢ ( ( ( ( 𝐾 ↑ 2 ) − 𝐾 ) / 2 ) / 𝑁 ) = ( ; ; 2 5 3 / ; ; 3 6 5 ) |
51 |
16 50
|
breqtrri |
⊢ ( log ‘ 2 ) < ( ( ( ( 𝐾 ↑ 2 ) − 𝐾 ) / 2 ) / 𝑁 ) |
52 |
|
2rp |
⊢ 2 ∈ ℝ+ |
53 |
|
relogcl |
⊢ ( 2 ∈ ℝ+ → ( log ‘ 2 ) ∈ ℝ ) |
54 |
52 53
|
ax-mp |
⊢ ( log ‘ 2 ) ∈ ℝ |
55 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
56 |
5 55
|
deccl |
⊢ ; 2 5 ∈ ℕ0 |
57 |
56 6
|
deccl |
⊢ ; ; 2 5 3 ∈ ℕ0 |
58 |
49 57
|
eqeltri |
⊢ ( ( ( 𝐾 ↑ 2 ) − 𝐾 ) / 2 ) ∈ ℕ0 |
59 |
58
|
nn0rei |
⊢ ( ( ( 𝐾 ↑ 2 ) − 𝐾 ) / 2 ) ∈ ℝ |
60 |
|
nndivre |
⊢ ( ( ( ( ( 𝐾 ↑ 2 ) − 𝐾 ) / 2 ) ∈ ℝ ∧ 𝑁 ∈ ℕ ) → ( ( ( ( 𝐾 ↑ 2 ) − 𝐾 ) / 2 ) / 𝑁 ) ∈ ℝ ) |
61 |
59 13 60
|
mp2an |
⊢ ( ( ( ( 𝐾 ↑ 2 ) − 𝐾 ) / 2 ) / 𝑁 ) ∈ ℝ |
62 |
54 61
|
ltnegi |
⊢ ( ( log ‘ 2 ) < ( ( ( ( 𝐾 ↑ 2 ) − 𝐾 ) / 2 ) / 𝑁 ) ↔ - ( ( ( ( 𝐾 ↑ 2 ) − 𝐾 ) / 2 ) / 𝑁 ) < - ( log ‘ 2 ) ) |
63 |
51 62
|
mpbi |
⊢ - ( ( ( ( 𝐾 ↑ 2 ) − 𝐾 ) / 2 ) / 𝑁 ) < - ( log ‘ 2 ) |
64 |
61
|
renegcli |
⊢ - ( ( ( ( 𝐾 ↑ 2 ) − 𝐾 ) / 2 ) / 𝑁 ) ∈ ℝ |
65 |
54
|
renegcli |
⊢ - ( log ‘ 2 ) ∈ ℝ |
66 |
|
eflt |
⊢ ( ( - ( ( ( ( 𝐾 ↑ 2 ) − 𝐾 ) / 2 ) / 𝑁 ) ∈ ℝ ∧ - ( log ‘ 2 ) ∈ ℝ ) → ( - ( ( ( ( 𝐾 ↑ 2 ) − 𝐾 ) / 2 ) / 𝑁 ) < - ( log ‘ 2 ) ↔ ( exp ‘ - ( ( ( ( 𝐾 ↑ 2 ) − 𝐾 ) / 2 ) / 𝑁 ) ) < ( exp ‘ - ( log ‘ 2 ) ) ) ) |
67 |
64 65 66
|
mp2an |
⊢ ( - ( ( ( ( 𝐾 ↑ 2 ) − 𝐾 ) / 2 ) / 𝑁 ) < - ( log ‘ 2 ) ↔ ( exp ‘ - ( ( ( ( 𝐾 ↑ 2 ) − 𝐾 ) / 2 ) / 𝑁 ) ) < ( exp ‘ - ( log ‘ 2 ) ) ) |
68 |
63 67
|
mpbi |
⊢ ( exp ‘ - ( ( ( ( 𝐾 ↑ 2 ) − 𝐾 ) / 2 ) / 𝑁 ) ) < ( exp ‘ - ( log ‘ 2 ) ) |
69 |
54
|
recni |
⊢ ( log ‘ 2 ) ∈ ℂ |
70 |
|
efneg |
⊢ ( ( log ‘ 2 ) ∈ ℂ → ( exp ‘ - ( log ‘ 2 ) ) = ( 1 / ( exp ‘ ( log ‘ 2 ) ) ) ) |
71 |
69 70
|
ax-mp |
⊢ ( exp ‘ - ( log ‘ 2 ) ) = ( 1 / ( exp ‘ ( log ‘ 2 ) ) ) |
72 |
|
reeflog |
⊢ ( 2 ∈ ℝ+ → ( exp ‘ ( log ‘ 2 ) ) = 2 ) |
73 |
52 72
|
ax-mp |
⊢ ( exp ‘ ( log ‘ 2 ) ) = 2 |
74 |
73
|
oveq2i |
⊢ ( 1 / ( exp ‘ ( log ‘ 2 ) ) ) = ( 1 / 2 ) |
75 |
71 74
|
eqtri |
⊢ ( exp ‘ - ( log ‘ 2 ) ) = ( 1 / 2 ) |
76 |
68 75
|
breqtri |
⊢ ( exp ‘ - ( ( ( ( 𝐾 ↑ 2 ) − 𝐾 ) / 2 ) / 𝑁 ) ) < ( 1 / 2 ) |
77 |
1 2
|
birthdaylem1 |
⊢ ( 𝑇 ⊆ 𝑆 ∧ 𝑆 ∈ Fin ∧ ( 𝑁 ∈ ℕ → 𝑆 ≠ ∅ ) ) |
78 |
77
|
simp2i |
⊢ 𝑆 ∈ Fin |
79 |
77
|
simp1i |
⊢ 𝑇 ⊆ 𝑆 |
80 |
|
ssfi |
⊢ ( ( 𝑆 ∈ Fin ∧ 𝑇 ⊆ 𝑆 ) → 𝑇 ∈ Fin ) |
81 |
78 79 80
|
mp2an |
⊢ 𝑇 ∈ Fin |
82 |
|
hashcl |
⊢ ( 𝑇 ∈ Fin → ( ♯ ‘ 𝑇 ) ∈ ℕ0 ) |
83 |
81 82
|
ax-mp |
⊢ ( ♯ ‘ 𝑇 ) ∈ ℕ0 |
84 |
83
|
nn0rei |
⊢ ( ♯ ‘ 𝑇 ) ∈ ℝ |
85 |
77
|
simp3i |
⊢ ( 𝑁 ∈ ℕ → 𝑆 ≠ ∅ ) |
86 |
13 85
|
ax-mp |
⊢ 𝑆 ≠ ∅ |
87 |
|
hashnncl |
⊢ ( 𝑆 ∈ Fin → ( ( ♯ ‘ 𝑆 ) ∈ ℕ ↔ 𝑆 ≠ ∅ ) ) |
88 |
78 87
|
ax-mp |
⊢ ( ( ♯ ‘ 𝑆 ) ∈ ℕ ↔ 𝑆 ≠ ∅ ) |
89 |
86 88
|
mpbir |
⊢ ( ♯ ‘ 𝑆 ) ∈ ℕ |
90 |
|
nndivre |
⊢ ( ( ( ♯ ‘ 𝑇 ) ∈ ℝ ∧ ( ♯ ‘ 𝑆 ) ∈ ℕ ) → ( ( ♯ ‘ 𝑇 ) / ( ♯ ‘ 𝑆 ) ) ∈ ℝ ) |
91 |
84 89 90
|
mp2an |
⊢ ( ( ♯ ‘ 𝑇 ) / ( ♯ ‘ 𝑆 ) ) ∈ ℝ |
92 |
|
reefcl |
⊢ ( - ( ( ( ( 𝐾 ↑ 2 ) − 𝐾 ) / 2 ) / 𝑁 ) ∈ ℝ → ( exp ‘ - ( ( ( ( 𝐾 ↑ 2 ) − 𝐾 ) / 2 ) / 𝑁 ) ) ∈ ℝ ) |
93 |
64 92
|
ax-mp |
⊢ ( exp ‘ - ( ( ( ( 𝐾 ↑ 2 ) − 𝐾 ) / 2 ) / 𝑁 ) ) ∈ ℝ |
94 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
95 |
91 93 94
|
lelttri |
⊢ ( ( ( ( ♯ ‘ 𝑇 ) / ( ♯ ‘ 𝑆 ) ) ≤ ( exp ‘ - ( ( ( ( 𝐾 ↑ 2 ) − 𝐾 ) / 2 ) / 𝑁 ) ) ∧ ( exp ‘ - ( ( ( ( 𝐾 ↑ 2 ) − 𝐾 ) / 2 ) / 𝑁 ) ) < ( 1 / 2 ) ) → ( ( ♯ ‘ 𝑇 ) / ( ♯ ‘ 𝑆 ) ) < ( 1 / 2 ) ) |
96 |
15 76 95
|
mp2an |
⊢ ( ( ♯ ‘ 𝑇 ) / ( ♯ ‘ 𝑆 ) ) < ( 1 / 2 ) |