Step |
Hyp |
Ref |
Expression |
1 |
|
birthday.s |
⊢ 𝑆 = { 𝑓 ∣ 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... 𝑁 ) } |
2 |
|
birthday.t |
⊢ 𝑇 = { 𝑓 ∣ 𝑓 : ( 1 ... 𝐾 ) –1-1→ ( 1 ... 𝑁 ) } |
3 |
|
f1f |
⊢ ( 𝑓 : ( 1 ... 𝐾 ) –1-1→ ( 1 ... 𝑁 ) → 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... 𝑁 ) ) |
4 |
3
|
ss2abi |
⊢ { 𝑓 ∣ 𝑓 : ( 1 ... 𝐾 ) –1-1→ ( 1 ... 𝑁 ) } ⊆ { 𝑓 ∣ 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... 𝑁 ) } |
5 |
4 2 1
|
3sstr4i |
⊢ 𝑇 ⊆ 𝑆 |
6 |
|
fzfi |
⊢ ( 1 ... 𝑁 ) ∈ Fin |
7 |
|
fzfi |
⊢ ( 1 ... 𝐾 ) ∈ Fin |
8 |
|
mapvalg |
⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ ( 1 ... 𝐾 ) ∈ Fin ) → ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝐾 ) ) = { 𝑓 ∣ 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... 𝑁 ) } ) |
9 |
6 7 8
|
mp2an |
⊢ ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝐾 ) ) = { 𝑓 ∣ 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... 𝑁 ) } |
10 |
1 9
|
eqtr4i |
⊢ 𝑆 = ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝐾 ) ) |
11 |
|
mapfi |
⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ ( 1 ... 𝐾 ) ∈ Fin ) → ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝐾 ) ) ∈ Fin ) |
12 |
6 7 11
|
mp2an |
⊢ ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝐾 ) ) ∈ Fin |
13 |
10 12
|
eqeltri |
⊢ 𝑆 ∈ Fin |
14 |
|
elfz1end |
⊢ ( 𝑁 ∈ ℕ ↔ 𝑁 ∈ ( 1 ... 𝑁 ) ) |
15 |
|
ne0i |
⊢ ( 𝑁 ∈ ( 1 ... 𝑁 ) → ( 1 ... 𝑁 ) ≠ ∅ ) |
16 |
14 15
|
sylbi |
⊢ ( 𝑁 ∈ ℕ → ( 1 ... 𝑁 ) ≠ ∅ ) |
17 |
10
|
eqeq1i |
⊢ ( 𝑆 = ∅ ↔ ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝐾 ) ) = ∅ ) |
18 |
|
ovex |
⊢ ( 1 ... 𝑁 ) ∈ V |
19 |
|
ovex |
⊢ ( 1 ... 𝐾 ) ∈ V |
20 |
18 19
|
map0 |
⊢ ( ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝐾 ) ) = ∅ ↔ ( ( 1 ... 𝑁 ) = ∅ ∧ ( 1 ... 𝐾 ) ≠ ∅ ) ) |
21 |
20
|
simplbi |
⊢ ( ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝐾 ) ) = ∅ → ( 1 ... 𝑁 ) = ∅ ) |
22 |
17 21
|
sylbi |
⊢ ( 𝑆 = ∅ → ( 1 ... 𝑁 ) = ∅ ) |
23 |
22
|
necon3i |
⊢ ( ( 1 ... 𝑁 ) ≠ ∅ → 𝑆 ≠ ∅ ) |
24 |
16 23
|
syl |
⊢ ( 𝑁 ∈ ℕ → 𝑆 ≠ ∅ ) |
25 |
5 13 24
|
3pm3.2i |
⊢ ( 𝑇 ⊆ 𝑆 ∧ 𝑆 ∈ Fin ∧ ( 𝑁 ∈ ℕ → 𝑆 ≠ ∅ ) ) |