| Step | Hyp | Ref | Expression | 
						
							| 1 |  | birthday.s | ⊢ 𝑆  =  { 𝑓  ∣  𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... 𝑁 ) } | 
						
							| 2 |  | birthday.t | ⊢ 𝑇  =  { 𝑓  ∣  𝑓 : ( 1 ... 𝐾 ) –1-1→ ( 1 ... 𝑁 ) } | 
						
							| 3 |  | f1f | ⊢ ( 𝑓 : ( 1 ... 𝐾 ) –1-1→ ( 1 ... 𝑁 )  →  𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... 𝑁 ) ) | 
						
							| 4 | 3 | ss2abi | ⊢ { 𝑓  ∣  𝑓 : ( 1 ... 𝐾 ) –1-1→ ( 1 ... 𝑁 ) }  ⊆  { 𝑓  ∣  𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... 𝑁 ) } | 
						
							| 5 | 4 2 1 | 3sstr4i | ⊢ 𝑇  ⊆  𝑆 | 
						
							| 6 |  | fzfi | ⊢ ( 1 ... 𝑁 )  ∈  Fin | 
						
							| 7 |  | fzfi | ⊢ ( 1 ... 𝐾 )  ∈  Fin | 
						
							| 8 |  | mapvalg | ⊢ ( ( ( 1 ... 𝑁 )  ∈  Fin  ∧  ( 1 ... 𝐾 )  ∈  Fin )  →  ( ( 1 ... 𝑁 )  ↑m  ( 1 ... 𝐾 ) )  =  { 𝑓  ∣  𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... 𝑁 ) } ) | 
						
							| 9 | 6 7 8 | mp2an | ⊢ ( ( 1 ... 𝑁 )  ↑m  ( 1 ... 𝐾 ) )  =  { 𝑓  ∣  𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... 𝑁 ) } | 
						
							| 10 | 1 9 | eqtr4i | ⊢ 𝑆  =  ( ( 1 ... 𝑁 )  ↑m  ( 1 ... 𝐾 ) ) | 
						
							| 11 |  | mapfi | ⊢ ( ( ( 1 ... 𝑁 )  ∈  Fin  ∧  ( 1 ... 𝐾 )  ∈  Fin )  →  ( ( 1 ... 𝑁 )  ↑m  ( 1 ... 𝐾 ) )  ∈  Fin ) | 
						
							| 12 | 6 7 11 | mp2an | ⊢ ( ( 1 ... 𝑁 )  ↑m  ( 1 ... 𝐾 ) )  ∈  Fin | 
						
							| 13 | 10 12 | eqeltri | ⊢ 𝑆  ∈  Fin | 
						
							| 14 |  | elfz1end | ⊢ ( 𝑁  ∈  ℕ  ↔  𝑁  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 15 |  | ne0i | ⊢ ( 𝑁  ∈  ( 1 ... 𝑁 )  →  ( 1 ... 𝑁 )  ≠  ∅ ) | 
						
							| 16 | 14 15 | sylbi | ⊢ ( 𝑁  ∈  ℕ  →  ( 1 ... 𝑁 )  ≠  ∅ ) | 
						
							| 17 | 10 | eqeq1i | ⊢ ( 𝑆  =  ∅  ↔  ( ( 1 ... 𝑁 )  ↑m  ( 1 ... 𝐾 ) )  =  ∅ ) | 
						
							| 18 |  | ovex | ⊢ ( 1 ... 𝑁 )  ∈  V | 
						
							| 19 |  | ovex | ⊢ ( 1 ... 𝐾 )  ∈  V | 
						
							| 20 | 18 19 | map0 | ⊢ ( ( ( 1 ... 𝑁 )  ↑m  ( 1 ... 𝐾 ) )  =  ∅  ↔  ( ( 1 ... 𝑁 )  =  ∅  ∧  ( 1 ... 𝐾 )  ≠  ∅ ) ) | 
						
							| 21 | 20 | simplbi | ⊢ ( ( ( 1 ... 𝑁 )  ↑m  ( 1 ... 𝐾 ) )  =  ∅  →  ( 1 ... 𝑁 )  =  ∅ ) | 
						
							| 22 | 17 21 | sylbi | ⊢ ( 𝑆  =  ∅  →  ( 1 ... 𝑁 )  =  ∅ ) | 
						
							| 23 | 22 | necon3i | ⊢ ( ( 1 ... 𝑁 )  ≠  ∅  →  𝑆  ≠  ∅ ) | 
						
							| 24 | 16 23 | syl | ⊢ ( 𝑁  ∈  ℕ  →  𝑆  ≠  ∅ ) | 
						
							| 25 | 5 13 24 | 3pm3.2i | ⊢ ( 𝑇  ⊆  𝑆  ∧  𝑆  ∈  Fin  ∧  ( 𝑁  ∈  ℕ  →  𝑆  ≠  ∅ ) ) |