Description: Theorem *4.22 of WhiteheadRussell p. 117. bitri in closed form. (Contributed by NM, 3-Jan-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | bitr | ⊢ ( ( ( 𝜑 ↔ 𝜓 ) ∧ ( 𝜓 ↔ 𝜒 ) ) → ( 𝜑 ↔ 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bibi1 | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( ( 𝜑 ↔ 𝜒 ) ↔ ( 𝜓 ↔ 𝜒 ) ) ) | |
2 | 1 | biimpar | ⊢ ( ( ( 𝜑 ↔ 𝜓 ) ∧ ( 𝜓 ↔ 𝜒 ) ) → ( 𝜑 ↔ 𝜒 ) ) |