Description: An inference from transitive law for logical equivalence. (Contributed by NM, 12-Mar-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bitr2i.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| bitr2i.2 | ⊢ ( 𝜓 ↔ 𝜒 ) | ||
| Assertion | bitr2i | ⊢ ( 𝜒 ↔ 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2i.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| 2 | bitr2i.2 | ⊢ ( 𝜓 ↔ 𝜒 ) | |
| 3 | 1 2 | bitri | ⊢ ( 𝜑 ↔ 𝜒 ) |
| 4 | 3 | bicomi | ⊢ ( 𝜒 ↔ 𝜑 ) |