Description: A syllogism inference from two biconditionals. (Contributed by NM, 1-Aug-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bitr2id.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| bitr2id.2 | ⊢ ( 𝜒 → ( 𝜓 ↔ 𝜃 ) ) | ||
| Assertion | bitr2id | ⊢ ( 𝜒 → ( 𝜃 ↔ 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2id.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| 2 | bitr2id.2 | ⊢ ( 𝜒 → ( 𝜓 ↔ 𝜃 ) ) | |
| 3 | 1 2 | bitrid | ⊢ ( 𝜒 → ( 𝜑 ↔ 𝜃 ) ) |
| 4 | 3 | bicomd | ⊢ ( 𝜒 → ( 𝜃 ↔ 𝜑 ) ) |