Description: Virtual deduction proof of bitr3 . The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1:: | |- (. ( ph <-> ps ) ->. ( ph <-> ps ) ). |
2:1,?: e1a | |- (. ( ph <-> ps ) ->. ( ps <-> ph ) ). |
3:: | |- (. ( ph <-> ps ) ,. ( ph <-> ch ) ->. ( ph <-> ch ) ). |
4:3,?: e2 | |- (. ( ph <-> ps ) ,. ( ph <-> ch ) ->. ( ch <-> ph ) ). |
5:2,4,?: e12 | |- (. ( ph <-> ps ) ,. ( ph <-> ch ) ->. ( ps <-> ch ) ). |
6:5: | |- (. ( ph <-> ps ) ->. ( ( ph <-> ch ) -> ( ps <-> ch ) ) ). |
qed:6: | |- ( ( ph <-> ps ) -> ( ( ph <-> ch ) -> ( ps <-> ch ) ) ) |
Ref | Expression | ||
---|---|---|---|
Assertion | bitr3VD | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( ( 𝜑 ↔ 𝜒 ) → ( 𝜓 ↔ 𝜒 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜑 ↔ 𝜓 ) ) | |
2 | 1 | bicomd | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜓 ↔ 𝜑 ) ) |
3 | id | ⊢ ( ( 𝜑 ↔ 𝜒 ) → ( 𝜑 ↔ 𝜒 ) ) | |
4 | 3 | bicomd | ⊢ ( ( 𝜑 ↔ 𝜒 ) → ( 𝜒 ↔ 𝜑 ) ) |
5 | biantr | ⊢ ( ( ( 𝜓 ↔ 𝜑 ) ∧ ( 𝜒 ↔ 𝜑 ) ) → ( 𝜓 ↔ 𝜒 ) ) | |
6 | 5 | ex | ⊢ ( ( 𝜓 ↔ 𝜑 ) → ( ( 𝜒 ↔ 𝜑 ) → ( 𝜓 ↔ 𝜒 ) ) ) |
7 | 2 4 6 | syl2im | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( ( 𝜑 ↔ 𝜒 ) → ( 𝜓 ↔ 𝜒 ) ) ) |