Metamath Proof Explorer


Theorem bitr3VD

Description: Virtual deduction proof of bitr3 . The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.

1:: |- (. ( ph <-> ps ) ->. ( ph <-> ps ) ).
2:1,?: e1a |- (. ( ph <-> ps ) ->. ( ps <-> ph ) ).
3:: |- (. ( ph <-> ps ) ,. ( ph <-> ch ) ->. ( ph <-> ch ) ).
4:3,?: e2 |- (. ( ph <-> ps ) ,. ( ph <-> ch ) ->. ( ch <-> ph ) ).
5:2,4,?: e12 |- (. ( ph <-> ps ) ,. ( ph <-> ch ) ->. ( ps <-> ch ) ).
6:5: |- (. ( ph <-> ps ) ->. ( ( ph <-> ch ) -> ( ps <-> ch ) ) ).
qed:6: |- ( ( ph <-> ps ) -> ( ( ph <-> ch ) -> ( ps <-> ch ) ) )
(Contributed by Alan Sare, 31-Dec-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bitr3VD ( ( 𝜑𝜓 ) → ( ( 𝜑𝜒 ) → ( 𝜓𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 id ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) )
2 1 bicomd ( ( 𝜑𝜓 ) → ( 𝜓𝜑 ) )
3 id ( ( 𝜑𝜒 ) → ( 𝜑𝜒 ) )
4 3 bicomd ( ( 𝜑𝜒 ) → ( 𝜒𝜑 ) )
5 biantr ( ( ( 𝜓𝜑 ) ∧ ( 𝜒𝜑 ) ) → ( 𝜓𝜒 ) )
6 5 ex ( ( 𝜓𝜑 ) → ( ( 𝜒𝜑 ) → ( 𝜓𝜒 ) ) )
7 2 4 6 syl2im ( ( 𝜑𝜓 ) → ( ( 𝜑𝜒 ) → ( 𝜓𝜒 ) ) )