Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bitr3di.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| bitr3di.2 | ⊢ ( 𝜓 ↔ 𝜃 ) | ||
| Assertion | bitr3di | ⊢ ( 𝜑 → ( 𝜒 ↔ 𝜃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr3di.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | bitr3di.2 | ⊢ ( 𝜓 ↔ 𝜃 ) | |
| 3 | 2 | bicomi | ⊢ ( 𝜃 ↔ 𝜓 ) |
| 4 | 3 1 | bitr2id | ⊢ ( 𝜑 → ( 𝜒 ↔ 𝜃 ) ) |