Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bitr4id.2 | ⊢ ( 𝜓 ↔ 𝜒 ) | |
| bitr4id.1 | ⊢ ( 𝜑 → ( 𝜃 ↔ 𝜒 ) ) | ||
| Assertion | bitr4id | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr4id.2 | ⊢ ( 𝜓 ↔ 𝜒 ) | |
| 2 | bitr4id.1 | ⊢ ( 𝜑 → ( 𝜃 ↔ 𝜒 ) ) | |
| 3 | 1 | bicomi | ⊢ ( 𝜒 ↔ 𝜓 ) |
| 4 | 2 3 | bitr2di | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜃 ) ) |