Metamath Proof Explorer
Description: Deduction form of bitri . (Contributed by NM, 12-Mar-1993) (Proof
shortened by Wolf Lammen, 14-Apr-2013)
|
|
Ref |
Expression |
|
Hypotheses |
bitrd.1 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
|
|
bitrd.2 |
⊢ ( 𝜑 → ( 𝜒 ↔ 𝜃 ) ) |
|
Assertion |
bitrd |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜃 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
bitrd.1 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
2 |
|
bitrd.2 |
⊢ ( 𝜑 → ( 𝜒 ↔ 𝜃 ) ) |
3 |
1
|
pm5.74i |
⊢ ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜒 ) ) |
4 |
2
|
pm5.74i |
⊢ ( ( 𝜑 → 𝜒 ) ↔ ( 𝜑 → 𝜃 ) ) |
5 |
3 4
|
bitri |
⊢ ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜃 ) ) |
6 |
5
|
pm5.74ri |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜃 ) ) |