Metamath Proof Explorer


Theorem bitrd

Description: Deduction form of bitri . (Contributed by NM, 12-Mar-1993) (Proof shortened by Wolf Lammen, 14-Apr-2013)

Ref Expression
Hypotheses bitrd.1 ( 𝜑 → ( 𝜓𝜒 ) )
bitrd.2 ( 𝜑 → ( 𝜒𝜃 ) )
Assertion bitrd ( 𝜑 → ( 𝜓𝜃 ) )

Proof

Step Hyp Ref Expression
1 bitrd.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 bitrd.2 ( 𝜑 → ( 𝜒𝜃 ) )
3 1 pm5.74i ( ( 𝜑𝜓 ) ↔ ( 𝜑𝜒 ) )
4 2 pm5.74i ( ( 𝜑𝜒 ) ↔ ( 𝜑𝜃 ) )
5 3 4 bitri ( ( 𝜑𝜓 ) ↔ ( 𝜑𝜃 ) )
6 5 pm5.74ri ( 𝜑 → ( 𝜓𝜃 ) )