Metamath Proof Explorer
Description: An inference from transitive law for logical equivalence. (Contributed by NM, 3-Jan-1993) (Proof shortened by Wolf Lammen, 13-Oct-2012)
|
|
Ref |
Expression |
|
Hypotheses |
bitri.1 |
⊢ ( 𝜑 ↔ 𝜓 ) |
|
|
bitri.2 |
⊢ ( 𝜓 ↔ 𝜒 ) |
|
Assertion |
bitri |
⊢ ( 𝜑 ↔ 𝜒 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bitri.1 |
⊢ ( 𝜑 ↔ 𝜓 ) |
| 2 |
|
bitri.2 |
⊢ ( 𝜓 ↔ 𝜒 ) |
| 3 |
1 2
|
sylbb |
⊢ ( 𝜑 → 𝜒 ) |
| 4 |
1 2
|
sylbbr |
⊢ ( 𝜒 → 𝜑 ) |
| 5 |
3 4
|
impbii |
⊢ ( 𝜑 ↔ 𝜒 ) |