Description: The zeroth bit of an even number is zero. (Contributed by Mario Carneiro, 5-Sep-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | bits0e | ⊢ ( 𝑁 ∈ ℤ → ¬ 0 ∈ ( bits ‘ ( 2 · 𝑁 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2z | ⊢ 2 ∈ ℤ | |
2 | dvdsmul1 | ⊢ ( ( 2 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 2 ∥ ( 2 · 𝑁 ) ) | |
3 | 1 2 | mpan | ⊢ ( 𝑁 ∈ ℤ → 2 ∥ ( 2 · 𝑁 ) ) |
4 | 1 | a1i | ⊢ ( 𝑁 ∈ ℤ → 2 ∈ ℤ ) |
5 | id | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℤ ) | |
6 | 4 5 | zmulcld | ⊢ ( 𝑁 ∈ ℤ → ( 2 · 𝑁 ) ∈ ℤ ) |
7 | bits0 | ⊢ ( ( 2 · 𝑁 ) ∈ ℤ → ( 0 ∈ ( bits ‘ ( 2 · 𝑁 ) ) ↔ ¬ 2 ∥ ( 2 · 𝑁 ) ) ) | |
8 | 6 7 | syl | ⊢ ( 𝑁 ∈ ℤ → ( 0 ∈ ( bits ‘ ( 2 · 𝑁 ) ) ↔ ¬ 2 ∥ ( 2 · 𝑁 ) ) ) |
9 | 8 | con2bid | ⊢ ( 𝑁 ∈ ℤ → ( 2 ∥ ( 2 · 𝑁 ) ↔ ¬ 0 ∈ ( bits ‘ ( 2 · 𝑁 ) ) ) ) |
10 | 3 9 | mpbid | ⊢ ( 𝑁 ∈ ℤ → ¬ 0 ∈ ( bits ‘ ( 2 · 𝑁 ) ) ) |