| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2z |
⊢ 2 ∈ ℤ |
| 2 |
|
dvdsmul1 |
⊢ ( ( 2 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 2 ∥ ( 2 · 𝑁 ) ) |
| 3 |
1 2
|
mpan |
⊢ ( 𝑁 ∈ ℤ → 2 ∥ ( 2 · 𝑁 ) ) |
| 4 |
1
|
a1i |
⊢ ( 𝑁 ∈ ℤ → 2 ∈ ℤ ) |
| 5 |
|
id |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℤ ) |
| 6 |
4 5
|
zmulcld |
⊢ ( 𝑁 ∈ ℤ → ( 2 · 𝑁 ) ∈ ℤ ) |
| 7 |
|
2nn |
⊢ 2 ∈ ℕ |
| 8 |
7
|
a1i |
⊢ ( 𝑁 ∈ ℤ → 2 ∈ ℕ ) |
| 9 |
|
1lt2 |
⊢ 1 < 2 |
| 10 |
9
|
a1i |
⊢ ( 𝑁 ∈ ℤ → 1 < 2 ) |
| 11 |
|
ndvdsp1 |
⊢ ( ( ( 2 · 𝑁 ) ∈ ℤ ∧ 2 ∈ ℕ ∧ 1 < 2 ) → ( 2 ∥ ( 2 · 𝑁 ) → ¬ 2 ∥ ( ( 2 · 𝑁 ) + 1 ) ) ) |
| 12 |
6 8 10 11
|
syl3anc |
⊢ ( 𝑁 ∈ ℤ → ( 2 ∥ ( 2 · 𝑁 ) → ¬ 2 ∥ ( ( 2 · 𝑁 ) + 1 ) ) ) |
| 13 |
3 12
|
mpd |
⊢ ( 𝑁 ∈ ℤ → ¬ 2 ∥ ( ( 2 · 𝑁 ) + 1 ) ) |
| 14 |
6
|
peano2zd |
⊢ ( 𝑁 ∈ ℤ → ( ( 2 · 𝑁 ) + 1 ) ∈ ℤ ) |
| 15 |
|
bits0 |
⊢ ( ( ( 2 · 𝑁 ) + 1 ) ∈ ℤ → ( 0 ∈ ( bits ‘ ( ( 2 · 𝑁 ) + 1 ) ) ↔ ¬ 2 ∥ ( ( 2 · 𝑁 ) + 1 ) ) ) |
| 16 |
14 15
|
syl |
⊢ ( 𝑁 ∈ ℤ → ( 0 ∈ ( bits ‘ ( ( 2 · 𝑁 ) + 1 ) ) ↔ ¬ 2 ∥ ( ( 2 · 𝑁 ) + 1 ) ) ) |
| 17 |
13 16
|
mpbird |
⊢ ( 𝑁 ∈ ℤ → 0 ∈ ( bits ‘ ( ( 2 · 𝑁 ) + 1 ) ) ) |