Description: The bits function is a function from integers to subsets of nonnegative integers. (Contributed by Mario Carneiro, 5-Sep-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | bitsf | ⊢ bits : ℤ ⟶ 𝒫 ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bits | ⊢ bits = ( 𝑛 ∈ ℤ ↦ { 𝑘 ∈ ℕ0 ∣ ¬ 2 ∥ ( ⌊ ‘ ( 𝑛 / ( 2 ↑ 𝑘 ) ) ) } ) | |
2 | nn0ex | ⊢ ℕ0 ∈ V | |
3 | ssrab2 | ⊢ { 𝑘 ∈ ℕ0 ∣ ¬ 2 ∥ ( ⌊ ‘ ( 𝑛 / ( 2 ↑ 𝑘 ) ) ) } ⊆ ℕ0 | |
4 | 2 3 | elpwi2 | ⊢ { 𝑘 ∈ ℕ0 ∣ ¬ 2 ∥ ( ⌊ ‘ ( 𝑛 / ( 2 ↑ 𝑘 ) ) ) } ∈ 𝒫 ℕ0 |
5 | 4 | a1i | ⊢ ( 𝑛 ∈ ℤ → { 𝑘 ∈ ℕ0 ∣ ¬ 2 ∥ ( ⌊ ‘ ( 𝑛 / ( 2 ↑ 𝑘 ) ) ) } ∈ 𝒫 ℕ0 ) |
6 | 1 5 | fmpti | ⊢ bits : ℤ ⟶ 𝒫 ℕ0 |