| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bitsf | ⊢ bits : ℤ ⟶ 𝒫  ℕ0 | 
						
							| 2 |  | simpl | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  𝑥  ∈  ℤ ) | 
						
							| 3 | 2 | zcnd | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  𝑥  ∈  ℂ ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( - 𝑥  ∈  ℕ  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  𝑥  ∈  ℂ ) | 
						
							| 5 |  | simpr | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  𝑦  ∈  ℤ ) | 
						
							| 6 | 5 | zcnd | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  𝑦  ∈  ℂ ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( - 𝑥  ∈  ℕ  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  𝑦  ∈  ℂ ) | 
						
							| 8 | 4 | negcld | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( - 𝑥  ∈  ℕ  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  - 𝑥  ∈  ℂ ) | 
						
							| 9 | 7 | negcld | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( - 𝑥  ∈  ℕ  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  - 𝑦  ∈  ℂ ) | 
						
							| 10 |  | 1cnd | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( - 𝑥  ∈  ℕ  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  1  ∈  ℂ ) | 
						
							| 11 |  | simprr | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( - 𝑥  ∈  ℕ  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) | 
						
							| 12 | 11 | difeq2d | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( - 𝑥  ∈  ℕ  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  ( ℕ0  ∖  ( bits ‘ 𝑥 ) )  =  ( ℕ0  ∖  ( bits ‘ 𝑦 ) ) ) | 
						
							| 13 |  | bitscmp | ⊢ ( 𝑥  ∈  ℤ  →  ( ℕ0  ∖  ( bits ‘ 𝑥 ) )  =  ( bits ‘ ( - 𝑥  −  1 ) ) ) | 
						
							| 14 | 13 | ad2antrr | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( - 𝑥  ∈  ℕ  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  ( ℕ0  ∖  ( bits ‘ 𝑥 ) )  =  ( bits ‘ ( - 𝑥  −  1 ) ) ) | 
						
							| 15 |  | bitscmp | ⊢ ( 𝑦  ∈  ℤ  →  ( ℕ0  ∖  ( bits ‘ 𝑦 ) )  =  ( bits ‘ ( - 𝑦  −  1 ) ) ) | 
						
							| 16 | 15 | ad2antlr | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( - 𝑥  ∈  ℕ  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  ( ℕ0  ∖  ( bits ‘ 𝑦 ) )  =  ( bits ‘ ( - 𝑦  −  1 ) ) ) | 
						
							| 17 | 12 14 16 | 3eqtr3d | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( - 𝑥  ∈  ℕ  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  ( bits ‘ ( - 𝑥  −  1 ) )  =  ( bits ‘ ( - 𝑦  −  1 ) ) ) | 
						
							| 18 |  | nnm1nn0 | ⊢ ( - 𝑥  ∈  ℕ  →  ( - 𝑥  −  1 )  ∈  ℕ0 ) | 
						
							| 19 | 18 | ad2antrl | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( - 𝑥  ∈  ℕ  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  ( - 𝑥  −  1 )  ∈  ℕ0 ) | 
						
							| 20 | 19 | fvresd | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( - 𝑥  ∈  ℕ  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  ( ( bits  ↾  ℕ0 ) ‘ ( - 𝑥  −  1 ) )  =  ( bits ‘ ( - 𝑥  −  1 ) ) ) | 
						
							| 21 |  | ominf | ⊢ ¬  ω  ∈  Fin | 
						
							| 22 |  | nn0ennn | ⊢ ℕ0  ≈  ℕ | 
						
							| 23 |  | nnenom | ⊢ ℕ  ≈  ω | 
						
							| 24 | 22 23 | entr2i | ⊢ ω  ≈  ℕ0 | 
						
							| 25 |  | enfii | ⊢ ( ( ℕ0  ∈  Fin  ∧  ω  ≈  ℕ0 )  →  ω  ∈  Fin ) | 
						
							| 26 | 24 25 | mpan2 | ⊢ ( ℕ0  ∈  Fin  →  ω  ∈  Fin ) | 
						
							| 27 | 21 26 | mto | ⊢ ¬  ℕ0  ∈  Fin | 
						
							| 28 |  | difinf | ⊢ ( ( ¬  ℕ0  ∈  Fin  ∧  ( bits ‘ 𝑥 )  ∈  Fin )  →  ¬  ( ℕ0  ∖  ( bits ‘ 𝑥 ) )  ∈  Fin ) | 
						
							| 29 | 27 28 | mpan | ⊢ ( ( bits ‘ 𝑥 )  ∈  Fin  →  ¬  ( ℕ0  ∖  ( bits ‘ 𝑥 ) )  ∈  Fin ) | 
						
							| 30 |  | bitsfi | ⊢ ( ( - 𝑥  −  1 )  ∈  ℕ0  →  ( bits ‘ ( - 𝑥  −  1 ) )  ∈  Fin ) | 
						
							| 31 | 19 30 | syl | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( - 𝑥  ∈  ℕ  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  ( bits ‘ ( - 𝑥  −  1 ) )  ∈  Fin ) | 
						
							| 32 | 14 31 | eqeltrd | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( - 𝑥  ∈  ℕ  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  ( ℕ0  ∖  ( bits ‘ 𝑥 ) )  ∈  Fin ) | 
						
							| 33 | 29 32 | nsyl3 | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( - 𝑥  ∈  ℕ  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  ¬  ( bits ‘ 𝑥 )  ∈  Fin ) | 
						
							| 34 | 11 33 | eqneltrrd | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( - 𝑥  ∈  ℕ  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  ¬  ( bits ‘ 𝑦 )  ∈  Fin ) | 
						
							| 35 |  | bitsfi | ⊢ ( 𝑦  ∈  ℕ0  →  ( bits ‘ 𝑦 )  ∈  Fin ) | 
						
							| 36 | 34 35 | nsyl | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( - 𝑥  ∈  ℕ  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  ¬  𝑦  ∈  ℕ0 ) | 
						
							| 37 | 5 | znegcld | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  - 𝑦  ∈  ℤ ) | 
						
							| 38 |  | elznn | ⊢ ( - 𝑦  ∈  ℤ  ↔  ( - 𝑦  ∈  ℝ  ∧  ( - 𝑦  ∈  ℕ  ∨  - - 𝑦  ∈  ℕ0 ) ) ) | 
						
							| 39 | 38 | simprbi | ⊢ ( - 𝑦  ∈  ℤ  →  ( - 𝑦  ∈  ℕ  ∨  - - 𝑦  ∈  ℕ0 ) ) | 
						
							| 40 | 37 39 | syl | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  ( - 𝑦  ∈  ℕ  ∨  - - 𝑦  ∈  ℕ0 ) ) | 
						
							| 41 | 6 | negnegd | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  - - 𝑦  =  𝑦 ) | 
						
							| 42 | 41 | eleq1d | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  ( - - 𝑦  ∈  ℕ0  ↔  𝑦  ∈  ℕ0 ) ) | 
						
							| 43 | 42 | orbi2d | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  ( ( - 𝑦  ∈  ℕ  ∨  - - 𝑦  ∈  ℕ0 )  ↔  ( - 𝑦  ∈  ℕ  ∨  𝑦  ∈  ℕ0 ) ) ) | 
						
							| 44 | 40 43 | mpbid | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  ( - 𝑦  ∈  ℕ  ∨  𝑦  ∈  ℕ0 ) ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( - 𝑥  ∈  ℕ  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  ( - 𝑦  ∈  ℕ  ∨  𝑦  ∈  ℕ0 ) ) | 
						
							| 46 | 45 | ord | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( - 𝑥  ∈  ℕ  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  ( ¬  - 𝑦  ∈  ℕ  →  𝑦  ∈  ℕ0 ) ) | 
						
							| 47 | 36 46 | mt3d | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( - 𝑥  ∈  ℕ  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  - 𝑦  ∈  ℕ ) | 
						
							| 48 |  | nnm1nn0 | ⊢ ( - 𝑦  ∈  ℕ  →  ( - 𝑦  −  1 )  ∈  ℕ0 ) | 
						
							| 49 | 47 48 | syl | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( - 𝑥  ∈  ℕ  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  ( - 𝑦  −  1 )  ∈  ℕ0 ) | 
						
							| 50 | 49 | fvresd | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( - 𝑥  ∈  ℕ  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  ( ( bits  ↾  ℕ0 ) ‘ ( - 𝑦  −  1 ) )  =  ( bits ‘ ( - 𝑦  −  1 ) ) ) | 
						
							| 51 | 17 20 50 | 3eqtr4d | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( - 𝑥  ∈  ℕ  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  ( ( bits  ↾  ℕ0 ) ‘ ( - 𝑥  −  1 ) )  =  ( ( bits  ↾  ℕ0 ) ‘ ( - 𝑦  −  1 ) ) ) | 
						
							| 52 |  | bitsf1o | ⊢ ( bits  ↾  ℕ0 ) : ℕ0 –1-1-onto→ ( 𝒫  ℕ0  ∩  Fin ) | 
						
							| 53 |  | f1of1 | ⊢ ( ( bits  ↾  ℕ0 ) : ℕ0 –1-1-onto→ ( 𝒫  ℕ0  ∩  Fin )  →  ( bits  ↾  ℕ0 ) : ℕ0 –1-1→ ( 𝒫  ℕ0  ∩  Fin ) ) | 
						
							| 54 | 52 53 | ax-mp | ⊢ ( bits  ↾  ℕ0 ) : ℕ0 –1-1→ ( 𝒫  ℕ0  ∩  Fin ) | 
						
							| 55 |  | f1fveq | ⊢ ( ( ( bits  ↾  ℕ0 ) : ℕ0 –1-1→ ( 𝒫  ℕ0  ∩  Fin )  ∧  ( ( - 𝑥  −  1 )  ∈  ℕ0  ∧  ( - 𝑦  −  1 )  ∈  ℕ0 ) )  →  ( ( ( bits  ↾  ℕ0 ) ‘ ( - 𝑥  −  1 ) )  =  ( ( bits  ↾  ℕ0 ) ‘ ( - 𝑦  −  1 ) )  ↔  ( - 𝑥  −  1 )  =  ( - 𝑦  −  1 ) ) ) | 
						
							| 56 | 54 55 | mpan | ⊢ ( ( ( - 𝑥  −  1 )  ∈  ℕ0  ∧  ( - 𝑦  −  1 )  ∈  ℕ0 )  →  ( ( ( bits  ↾  ℕ0 ) ‘ ( - 𝑥  −  1 ) )  =  ( ( bits  ↾  ℕ0 ) ‘ ( - 𝑦  −  1 ) )  ↔  ( - 𝑥  −  1 )  =  ( - 𝑦  −  1 ) ) ) | 
						
							| 57 | 19 49 56 | syl2anc | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( - 𝑥  ∈  ℕ  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  ( ( ( bits  ↾  ℕ0 ) ‘ ( - 𝑥  −  1 ) )  =  ( ( bits  ↾  ℕ0 ) ‘ ( - 𝑦  −  1 ) )  ↔  ( - 𝑥  −  1 )  =  ( - 𝑦  −  1 ) ) ) | 
						
							| 58 | 51 57 | mpbid | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( - 𝑥  ∈  ℕ  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  ( - 𝑥  −  1 )  =  ( - 𝑦  −  1 ) ) | 
						
							| 59 | 8 9 10 58 | subcan2d | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( - 𝑥  ∈  ℕ  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  - 𝑥  =  - 𝑦 ) | 
						
							| 60 | 4 7 59 | neg11d | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( - 𝑥  ∈  ℕ  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  𝑥  =  𝑦 ) | 
						
							| 61 | 60 | expr | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  - 𝑥  ∈  ℕ )  →  ( ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 62 | 3 | negnegd | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  - - 𝑥  =  𝑥 ) | 
						
							| 63 | 62 | eleq1d | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  ( - - 𝑥  ∈  ℕ0  ↔  𝑥  ∈  ℕ0 ) ) | 
						
							| 64 | 63 | biimpa | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  - - 𝑥  ∈  ℕ0 )  →  𝑥  ∈  ℕ0 ) | 
						
							| 65 |  | simprr | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( 𝑥  ∈  ℕ0  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) | 
						
							| 66 |  | fvres | ⊢ ( 𝑥  ∈  ℕ0  →  ( ( bits  ↾  ℕ0 ) ‘ 𝑥 )  =  ( bits ‘ 𝑥 ) ) | 
						
							| 67 | 66 | ad2antrl | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( 𝑥  ∈  ℕ0  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  ( ( bits  ↾  ℕ0 ) ‘ 𝑥 )  =  ( bits ‘ 𝑥 ) ) | 
						
							| 68 | 15 | ad2antlr | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( 𝑥  ∈  ℕ0  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  ( ℕ0  ∖  ( bits ‘ 𝑦 ) )  =  ( bits ‘ ( - 𝑦  −  1 ) ) ) | 
						
							| 69 |  | bitsfi | ⊢ ( 𝑥  ∈  ℕ0  →  ( bits ‘ 𝑥 )  ∈  Fin ) | 
						
							| 70 | 69 | ad2antrl | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( 𝑥  ∈  ℕ0  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  ( bits ‘ 𝑥 )  ∈  Fin ) | 
						
							| 71 | 65 70 | eqeltrrd | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( 𝑥  ∈  ℕ0  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  ( bits ‘ 𝑦 )  ∈  Fin ) | 
						
							| 72 |  | difinf | ⊢ ( ( ¬  ℕ0  ∈  Fin  ∧  ( bits ‘ 𝑦 )  ∈  Fin )  →  ¬  ( ℕ0  ∖  ( bits ‘ 𝑦 ) )  ∈  Fin ) | 
						
							| 73 | 27 71 72 | sylancr | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( 𝑥  ∈  ℕ0  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  ¬  ( ℕ0  ∖  ( bits ‘ 𝑦 ) )  ∈  Fin ) | 
						
							| 74 | 68 73 | eqneltrrd | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( 𝑥  ∈  ℕ0  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  ¬  ( bits ‘ ( - 𝑦  −  1 ) )  ∈  Fin ) | 
						
							| 75 |  | bitsfi | ⊢ ( ( - 𝑦  −  1 )  ∈  ℕ0  →  ( bits ‘ ( - 𝑦  −  1 ) )  ∈  Fin ) | 
						
							| 76 | 74 75 | nsyl | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( 𝑥  ∈  ℕ0  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  ¬  ( - 𝑦  −  1 )  ∈  ℕ0 ) | 
						
							| 77 | 76 48 | nsyl | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( 𝑥  ∈  ℕ0  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  ¬  - 𝑦  ∈  ℕ ) | 
						
							| 78 | 44 | adantr | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( 𝑥  ∈  ℕ0  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  ( - 𝑦  ∈  ℕ  ∨  𝑦  ∈  ℕ0 ) ) | 
						
							| 79 | 78 | ord | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( 𝑥  ∈  ℕ0  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  ( ¬  - 𝑦  ∈  ℕ  →  𝑦  ∈  ℕ0 ) ) | 
						
							| 80 | 77 79 | mpd | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( 𝑥  ∈  ℕ0  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  𝑦  ∈  ℕ0 ) | 
						
							| 81 | 80 | fvresd | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( 𝑥  ∈  ℕ0  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  ( ( bits  ↾  ℕ0 ) ‘ 𝑦 )  =  ( bits ‘ 𝑦 ) ) | 
						
							| 82 | 65 67 81 | 3eqtr4d | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( 𝑥  ∈  ℕ0  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  ( ( bits  ↾  ℕ0 ) ‘ 𝑥 )  =  ( ( bits  ↾  ℕ0 ) ‘ 𝑦 ) ) | 
						
							| 83 |  | simprl | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( 𝑥  ∈  ℕ0  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  𝑥  ∈  ℕ0 ) | 
						
							| 84 |  | f1fveq | ⊢ ( ( ( bits  ↾  ℕ0 ) : ℕ0 –1-1→ ( 𝒫  ℕ0  ∩  Fin )  ∧  ( 𝑥  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 ) )  →  ( ( ( bits  ↾  ℕ0 ) ‘ 𝑥 )  =  ( ( bits  ↾  ℕ0 ) ‘ 𝑦 )  ↔  𝑥  =  𝑦 ) ) | 
						
							| 85 | 54 84 | mpan | ⊢ ( ( 𝑥  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  →  ( ( ( bits  ↾  ℕ0 ) ‘ 𝑥 )  =  ( ( bits  ↾  ℕ0 ) ‘ 𝑦 )  ↔  𝑥  =  𝑦 ) ) | 
						
							| 86 | 83 80 85 | syl2anc | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( 𝑥  ∈  ℕ0  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  ( ( ( bits  ↾  ℕ0 ) ‘ 𝑥 )  =  ( ( bits  ↾  ℕ0 ) ‘ 𝑦 )  ↔  𝑥  =  𝑦 ) ) | 
						
							| 87 | 82 86 | mpbid | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  ( 𝑥  ∈  ℕ0  ∧  ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 ) ) )  →  𝑥  =  𝑦 ) | 
						
							| 88 | 87 | expr | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  𝑥  ∈  ℕ0 )  →  ( ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 89 | 64 88 | syldan | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  ∧  - - 𝑥  ∈  ℕ0 )  →  ( ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 90 | 2 | znegcld | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  - 𝑥  ∈  ℤ ) | 
						
							| 91 |  | elznn | ⊢ ( - 𝑥  ∈  ℤ  ↔  ( - 𝑥  ∈  ℝ  ∧  ( - 𝑥  ∈  ℕ  ∨  - - 𝑥  ∈  ℕ0 ) ) ) | 
						
							| 92 | 91 | simprbi | ⊢ ( - 𝑥  ∈  ℤ  →  ( - 𝑥  ∈  ℕ  ∨  - - 𝑥  ∈  ℕ0 ) ) | 
						
							| 93 | 90 92 | syl | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  ( - 𝑥  ∈  ℕ  ∨  - - 𝑥  ∈  ℕ0 ) ) | 
						
							| 94 | 61 89 93 | mpjaodan | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  ( ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 95 | 94 | rgen2 | ⊢ ∀ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ℤ ( ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 )  →  𝑥  =  𝑦 ) | 
						
							| 96 |  | dff13 | ⊢ ( bits : ℤ –1-1→ 𝒫  ℕ0  ↔  ( bits : ℤ ⟶ 𝒫  ℕ0  ∧  ∀ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ℤ ( ( bits ‘ 𝑥 )  =  ( bits ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 97 | 1 95 96 | mpbir2an | ⊢ bits : ℤ –1-1→ 𝒫  ℕ0 |