| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0re | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℝ ) | 
						
							| 2 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 3 | 2 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  2  ∈  ℝ ) | 
						
							| 4 |  | 1lt2 | ⊢ 1  <  2 | 
						
							| 5 | 4 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  1  <  2 ) | 
						
							| 6 |  | expnbnd | ⊢ ( ( 𝑁  ∈  ℝ  ∧  2  ∈  ℝ  ∧  1  <  2 )  →  ∃ 𝑚  ∈  ℕ 𝑁  <  ( 2 ↑ 𝑚 ) ) | 
						
							| 7 | 1 3 5 6 | syl3anc | ⊢ ( 𝑁  ∈  ℕ0  →  ∃ 𝑚  ∈  ℕ 𝑁  <  ( 2 ↑ 𝑚 ) ) | 
						
							| 8 |  | fzofi | ⊢ ( 0 ..^ 𝑚 )  ∈  Fin | 
						
							| 9 |  | simpl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑚  ∈  ℕ  ∧  𝑁  <  ( 2 ↑ 𝑚 ) ) )  →  𝑁  ∈  ℕ0 ) | 
						
							| 10 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 11 | 9 10 | eleqtrdi | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑚  ∈  ℕ  ∧  𝑁  <  ( 2 ↑ 𝑚 ) ) )  →  𝑁  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 12 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 13 | 12 | a1i | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑚  ∈  ℕ  ∧  𝑁  <  ( 2 ↑ 𝑚 ) ) )  →  2  ∈  ℕ ) | 
						
							| 14 |  | simprl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑚  ∈  ℕ  ∧  𝑁  <  ( 2 ↑ 𝑚 ) ) )  →  𝑚  ∈  ℕ ) | 
						
							| 15 | 14 | nnnn0d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑚  ∈  ℕ  ∧  𝑁  <  ( 2 ↑ 𝑚 ) ) )  →  𝑚  ∈  ℕ0 ) | 
						
							| 16 | 13 15 | nnexpcld | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑚  ∈  ℕ  ∧  𝑁  <  ( 2 ↑ 𝑚 ) ) )  →  ( 2 ↑ 𝑚 )  ∈  ℕ ) | 
						
							| 17 | 16 | nnzd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑚  ∈  ℕ  ∧  𝑁  <  ( 2 ↑ 𝑚 ) ) )  →  ( 2 ↑ 𝑚 )  ∈  ℤ ) | 
						
							| 18 |  | simprr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑚  ∈  ℕ  ∧  𝑁  <  ( 2 ↑ 𝑚 ) ) )  →  𝑁  <  ( 2 ↑ 𝑚 ) ) | 
						
							| 19 |  | elfzo2 | ⊢ ( 𝑁  ∈  ( 0 ..^ ( 2 ↑ 𝑚 ) )  ↔  ( 𝑁  ∈  ( ℤ≥ ‘ 0 )  ∧  ( 2 ↑ 𝑚 )  ∈  ℤ  ∧  𝑁  <  ( 2 ↑ 𝑚 ) ) ) | 
						
							| 20 | 11 17 18 19 | syl3anbrc | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑚  ∈  ℕ  ∧  𝑁  <  ( 2 ↑ 𝑚 ) ) )  →  𝑁  ∈  ( 0 ..^ ( 2 ↑ 𝑚 ) ) ) | 
						
							| 21 | 9 | nn0zd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑚  ∈  ℕ  ∧  𝑁  <  ( 2 ↑ 𝑚 ) ) )  →  𝑁  ∈  ℤ ) | 
						
							| 22 |  | bitsfzo | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑚  ∈  ℕ0 )  →  ( 𝑁  ∈  ( 0 ..^ ( 2 ↑ 𝑚 ) )  ↔  ( bits ‘ 𝑁 )  ⊆  ( 0 ..^ 𝑚 ) ) ) | 
						
							| 23 | 21 15 22 | syl2anc | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑚  ∈  ℕ  ∧  𝑁  <  ( 2 ↑ 𝑚 ) ) )  →  ( 𝑁  ∈  ( 0 ..^ ( 2 ↑ 𝑚 ) )  ↔  ( bits ‘ 𝑁 )  ⊆  ( 0 ..^ 𝑚 ) ) ) | 
						
							| 24 | 20 23 | mpbid | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑚  ∈  ℕ  ∧  𝑁  <  ( 2 ↑ 𝑚 ) ) )  →  ( bits ‘ 𝑁 )  ⊆  ( 0 ..^ 𝑚 ) ) | 
						
							| 25 |  | ssfi | ⊢ ( ( ( 0 ..^ 𝑚 )  ∈  Fin  ∧  ( bits ‘ 𝑁 )  ⊆  ( 0 ..^ 𝑚 ) )  →  ( bits ‘ 𝑁 )  ∈  Fin ) | 
						
							| 26 | 8 24 25 | sylancr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑚  ∈  ℕ  ∧  𝑁  <  ( 2 ↑ 𝑚 ) ) )  →  ( bits ‘ 𝑁 )  ∈  Fin ) | 
						
							| 27 | 7 26 | rexlimddv | ⊢ ( 𝑁  ∈  ℕ0  →  ( bits ‘ 𝑁 )  ∈  Fin ) |