Step |
Hyp |
Ref |
Expression |
1 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
2 |
|
2re |
⊢ 2 ∈ ℝ |
3 |
2
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → 2 ∈ ℝ ) |
4 |
|
1lt2 |
⊢ 1 < 2 |
5 |
4
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → 1 < 2 ) |
6 |
|
expnbnd |
⊢ ( ( 𝑁 ∈ ℝ ∧ 2 ∈ ℝ ∧ 1 < 2 ) → ∃ 𝑚 ∈ ℕ 𝑁 < ( 2 ↑ 𝑚 ) ) |
7 |
1 3 5 6
|
syl3anc |
⊢ ( 𝑁 ∈ ℕ0 → ∃ 𝑚 ∈ ℕ 𝑁 < ( 2 ↑ 𝑚 ) ) |
8 |
|
fzofi |
⊢ ( 0 ..^ 𝑚 ) ∈ Fin |
9 |
|
simpl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑚 ∈ ℕ ∧ 𝑁 < ( 2 ↑ 𝑚 ) ) ) → 𝑁 ∈ ℕ0 ) |
10 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
11 |
9 10
|
eleqtrdi |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑚 ∈ ℕ ∧ 𝑁 < ( 2 ↑ 𝑚 ) ) ) → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
12 |
|
2nn |
⊢ 2 ∈ ℕ |
13 |
12
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑚 ∈ ℕ ∧ 𝑁 < ( 2 ↑ 𝑚 ) ) ) → 2 ∈ ℕ ) |
14 |
|
simprl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑚 ∈ ℕ ∧ 𝑁 < ( 2 ↑ 𝑚 ) ) ) → 𝑚 ∈ ℕ ) |
15 |
14
|
nnnn0d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑚 ∈ ℕ ∧ 𝑁 < ( 2 ↑ 𝑚 ) ) ) → 𝑚 ∈ ℕ0 ) |
16 |
13 15
|
nnexpcld |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑚 ∈ ℕ ∧ 𝑁 < ( 2 ↑ 𝑚 ) ) ) → ( 2 ↑ 𝑚 ) ∈ ℕ ) |
17 |
16
|
nnzd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑚 ∈ ℕ ∧ 𝑁 < ( 2 ↑ 𝑚 ) ) ) → ( 2 ↑ 𝑚 ) ∈ ℤ ) |
18 |
|
simprr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑚 ∈ ℕ ∧ 𝑁 < ( 2 ↑ 𝑚 ) ) ) → 𝑁 < ( 2 ↑ 𝑚 ) ) |
19 |
|
elfzo2 |
⊢ ( 𝑁 ∈ ( 0 ..^ ( 2 ↑ 𝑚 ) ) ↔ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) ∧ ( 2 ↑ 𝑚 ) ∈ ℤ ∧ 𝑁 < ( 2 ↑ 𝑚 ) ) ) |
20 |
11 17 18 19
|
syl3anbrc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑚 ∈ ℕ ∧ 𝑁 < ( 2 ↑ 𝑚 ) ) ) → 𝑁 ∈ ( 0 ..^ ( 2 ↑ 𝑚 ) ) ) |
21 |
9
|
nn0zd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑚 ∈ ℕ ∧ 𝑁 < ( 2 ↑ 𝑚 ) ) ) → 𝑁 ∈ ℤ ) |
22 |
|
bitsfzo |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ) → ( 𝑁 ∈ ( 0 ..^ ( 2 ↑ 𝑚 ) ) ↔ ( bits ‘ 𝑁 ) ⊆ ( 0 ..^ 𝑚 ) ) ) |
23 |
21 15 22
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑚 ∈ ℕ ∧ 𝑁 < ( 2 ↑ 𝑚 ) ) ) → ( 𝑁 ∈ ( 0 ..^ ( 2 ↑ 𝑚 ) ) ↔ ( bits ‘ 𝑁 ) ⊆ ( 0 ..^ 𝑚 ) ) ) |
24 |
20 23
|
mpbid |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑚 ∈ ℕ ∧ 𝑁 < ( 2 ↑ 𝑚 ) ) ) → ( bits ‘ 𝑁 ) ⊆ ( 0 ..^ 𝑚 ) ) |
25 |
|
ssfi |
⊢ ( ( ( 0 ..^ 𝑚 ) ∈ Fin ∧ ( bits ‘ 𝑁 ) ⊆ ( 0 ..^ 𝑚 ) ) → ( bits ‘ 𝑁 ) ∈ Fin ) |
26 |
8 24 25
|
sylancr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑚 ∈ ℕ ∧ 𝑁 < ( 2 ↑ 𝑚 ) ) ) → ( bits ‘ 𝑁 ) ∈ Fin ) |
27 |
7 26
|
rexlimddv |
⊢ ( 𝑁 ∈ ℕ0 → ( bits ‘ 𝑁 ) ∈ Fin ) |