Step |
Hyp |
Ref |
Expression |
1 |
|
elinel2 |
⊢ ( 𝐴 ∈ ( 𝒫 ℕ0 ∩ Fin ) → 𝐴 ∈ Fin ) |
2 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
3 |
2
|
a1i |
⊢ ( ( 𝐴 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑛 ∈ 𝐴 ) → 2 ∈ ℕ0 ) |
4 |
|
elfpw |
⊢ ( 𝐴 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↔ ( 𝐴 ⊆ ℕ0 ∧ 𝐴 ∈ Fin ) ) |
5 |
4
|
simplbi |
⊢ ( 𝐴 ∈ ( 𝒫 ℕ0 ∩ Fin ) → 𝐴 ⊆ ℕ0 ) |
6 |
5
|
sselda |
⊢ ( ( 𝐴 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑛 ∈ 𝐴 ) → 𝑛 ∈ ℕ0 ) |
7 |
3 6
|
nn0expcld |
⊢ ( ( 𝐴 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑛 ∈ 𝐴 ) → ( 2 ↑ 𝑛 ) ∈ ℕ0 ) |
8 |
1 7
|
fsumnn0cl |
⊢ ( 𝐴 ∈ ( 𝒫 ℕ0 ∩ Fin ) → Σ 𝑛 ∈ 𝐴 ( 2 ↑ 𝑛 ) ∈ ℕ0 ) |
9 |
|
bitsinv1 |
⊢ ( Σ 𝑛 ∈ 𝐴 ( 2 ↑ 𝑛 ) ∈ ℕ0 → Σ 𝑚 ∈ ( bits ‘ Σ 𝑛 ∈ 𝐴 ( 2 ↑ 𝑛 ) ) ( 2 ↑ 𝑚 ) = Σ 𝑛 ∈ 𝐴 ( 2 ↑ 𝑛 ) ) |
10 |
8 9
|
syl |
⊢ ( 𝐴 ∈ ( 𝒫 ℕ0 ∩ Fin ) → Σ 𝑚 ∈ ( bits ‘ Σ 𝑛 ∈ 𝐴 ( 2 ↑ 𝑛 ) ) ( 2 ↑ 𝑚 ) = Σ 𝑛 ∈ 𝐴 ( 2 ↑ 𝑛 ) ) |
11 |
|
bitsss |
⊢ ( bits ‘ Σ 𝑛 ∈ 𝐴 ( 2 ↑ 𝑛 ) ) ⊆ ℕ0 |
12 |
11
|
a1i |
⊢ ( 𝐴 ∈ ( 𝒫 ℕ0 ∩ Fin ) → ( bits ‘ Σ 𝑛 ∈ 𝐴 ( 2 ↑ 𝑛 ) ) ⊆ ℕ0 ) |
13 |
|
bitsfi |
⊢ ( Σ 𝑛 ∈ 𝐴 ( 2 ↑ 𝑛 ) ∈ ℕ0 → ( bits ‘ Σ 𝑛 ∈ 𝐴 ( 2 ↑ 𝑛 ) ) ∈ Fin ) |
14 |
8 13
|
syl |
⊢ ( 𝐴 ∈ ( 𝒫 ℕ0 ∩ Fin ) → ( bits ‘ Σ 𝑛 ∈ 𝐴 ( 2 ↑ 𝑛 ) ) ∈ Fin ) |
15 |
|
elfpw |
⊢ ( ( bits ‘ Σ 𝑛 ∈ 𝐴 ( 2 ↑ 𝑛 ) ) ∈ ( 𝒫 ℕ0 ∩ Fin ) ↔ ( ( bits ‘ Σ 𝑛 ∈ 𝐴 ( 2 ↑ 𝑛 ) ) ⊆ ℕ0 ∧ ( bits ‘ Σ 𝑛 ∈ 𝐴 ( 2 ↑ 𝑛 ) ) ∈ Fin ) ) |
16 |
12 14 15
|
sylanbrc |
⊢ ( 𝐴 ∈ ( 𝒫 ℕ0 ∩ Fin ) → ( bits ‘ Σ 𝑛 ∈ 𝐴 ( 2 ↑ 𝑛 ) ) ∈ ( 𝒫 ℕ0 ∩ Fin ) ) |
17 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 2 ↑ 𝑛 ) = ( 2 ↑ 𝑚 ) ) |
18 |
17
|
cbvsumv |
⊢ Σ 𝑛 ∈ 𝑘 ( 2 ↑ 𝑛 ) = Σ 𝑚 ∈ 𝑘 ( 2 ↑ 𝑚 ) |
19 |
|
sumeq1 |
⊢ ( 𝑘 = ( bits ‘ Σ 𝑛 ∈ 𝐴 ( 2 ↑ 𝑛 ) ) → Σ 𝑚 ∈ 𝑘 ( 2 ↑ 𝑚 ) = Σ 𝑚 ∈ ( bits ‘ Σ 𝑛 ∈ 𝐴 ( 2 ↑ 𝑛 ) ) ( 2 ↑ 𝑚 ) ) |
20 |
18 19
|
eqtrid |
⊢ ( 𝑘 = ( bits ‘ Σ 𝑛 ∈ 𝐴 ( 2 ↑ 𝑛 ) ) → Σ 𝑛 ∈ 𝑘 ( 2 ↑ 𝑛 ) = Σ 𝑚 ∈ ( bits ‘ Σ 𝑛 ∈ 𝐴 ( 2 ↑ 𝑛 ) ) ( 2 ↑ 𝑚 ) ) |
21 |
|
eqid |
⊢ ( 𝑘 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ Σ 𝑛 ∈ 𝑘 ( 2 ↑ 𝑛 ) ) = ( 𝑘 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ Σ 𝑛 ∈ 𝑘 ( 2 ↑ 𝑛 ) ) |
22 |
|
sumex |
⊢ Σ 𝑚 ∈ ( bits ‘ Σ 𝑛 ∈ 𝐴 ( 2 ↑ 𝑛 ) ) ( 2 ↑ 𝑚 ) ∈ V |
23 |
20 21 22
|
fvmpt |
⊢ ( ( bits ‘ Σ 𝑛 ∈ 𝐴 ( 2 ↑ 𝑛 ) ) ∈ ( 𝒫 ℕ0 ∩ Fin ) → ( ( 𝑘 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ Σ 𝑛 ∈ 𝑘 ( 2 ↑ 𝑛 ) ) ‘ ( bits ‘ Σ 𝑛 ∈ 𝐴 ( 2 ↑ 𝑛 ) ) ) = Σ 𝑚 ∈ ( bits ‘ Σ 𝑛 ∈ 𝐴 ( 2 ↑ 𝑛 ) ) ( 2 ↑ 𝑚 ) ) |
24 |
16 23
|
syl |
⊢ ( 𝐴 ∈ ( 𝒫 ℕ0 ∩ Fin ) → ( ( 𝑘 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ Σ 𝑛 ∈ 𝑘 ( 2 ↑ 𝑛 ) ) ‘ ( bits ‘ Σ 𝑛 ∈ 𝐴 ( 2 ↑ 𝑛 ) ) ) = Σ 𝑚 ∈ ( bits ‘ Σ 𝑛 ∈ 𝐴 ( 2 ↑ 𝑛 ) ) ( 2 ↑ 𝑚 ) ) |
25 |
|
sumeq1 |
⊢ ( 𝑘 = 𝐴 → Σ 𝑛 ∈ 𝑘 ( 2 ↑ 𝑛 ) = Σ 𝑛 ∈ 𝐴 ( 2 ↑ 𝑛 ) ) |
26 |
|
sumex |
⊢ Σ 𝑛 ∈ 𝐴 ( 2 ↑ 𝑛 ) ∈ V |
27 |
25 21 26
|
fvmpt |
⊢ ( 𝐴 ∈ ( 𝒫 ℕ0 ∩ Fin ) → ( ( 𝑘 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ Σ 𝑛 ∈ 𝑘 ( 2 ↑ 𝑛 ) ) ‘ 𝐴 ) = Σ 𝑛 ∈ 𝐴 ( 2 ↑ 𝑛 ) ) |
28 |
10 24 27
|
3eqtr4d |
⊢ ( 𝐴 ∈ ( 𝒫 ℕ0 ∩ Fin ) → ( ( 𝑘 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ Σ 𝑛 ∈ 𝑘 ( 2 ↑ 𝑛 ) ) ‘ ( bits ‘ Σ 𝑛 ∈ 𝐴 ( 2 ↑ 𝑛 ) ) ) = ( ( 𝑘 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ Σ 𝑛 ∈ 𝑘 ( 2 ↑ 𝑛 ) ) ‘ 𝐴 ) ) |
29 |
21
|
ackbijnn |
⊢ ( 𝑘 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ Σ 𝑛 ∈ 𝑘 ( 2 ↑ 𝑛 ) ) : ( 𝒫 ℕ0 ∩ Fin ) –1-1-onto→ ℕ0 |
30 |
|
f1of1 |
⊢ ( ( 𝑘 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ Σ 𝑛 ∈ 𝑘 ( 2 ↑ 𝑛 ) ) : ( 𝒫 ℕ0 ∩ Fin ) –1-1-onto→ ℕ0 → ( 𝑘 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ Σ 𝑛 ∈ 𝑘 ( 2 ↑ 𝑛 ) ) : ( 𝒫 ℕ0 ∩ Fin ) –1-1→ ℕ0 ) |
31 |
29 30
|
mp1i |
⊢ ( 𝐴 ∈ ( 𝒫 ℕ0 ∩ Fin ) → ( 𝑘 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ Σ 𝑛 ∈ 𝑘 ( 2 ↑ 𝑛 ) ) : ( 𝒫 ℕ0 ∩ Fin ) –1-1→ ℕ0 ) |
32 |
|
id |
⊢ ( 𝐴 ∈ ( 𝒫 ℕ0 ∩ Fin ) → 𝐴 ∈ ( 𝒫 ℕ0 ∩ Fin ) ) |
33 |
|
f1fveq |
⊢ ( ( ( 𝑘 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ Σ 𝑛 ∈ 𝑘 ( 2 ↑ 𝑛 ) ) : ( 𝒫 ℕ0 ∩ Fin ) –1-1→ ℕ0 ∧ ( ( bits ‘ Σ 𝑛 ∈ 𝐴 ( 2 ↑ 𝑛 ) ) ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝐴 ∈ ( 𝒫 ℕ0 ∩ Fin ) ) ) → ( ( ( 𝑘 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ Σ 𝑛 ∈ 𝑘 ( 2 ↑ 𝑛 ) ) ‘ ( bits ‘ Σ 𝑛 ∈ 𝐴 ( 2 ↑ 𝑛 ) ) ) = ( ( 𝑘 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ Σ 𝑛 ∈ 𝑘 ( 2 ↑ 𝑛 ) ) ‘ 𝐴 ) ↔ ( bits ‘ Σ 𝑛 ∈ 𝐴 ( 2 ↑ 𝑛 ) ) = 𝐴 ) ) |
34 |
31 16 32 33
|
syl12anc |
⊢ ( 𝐴 ∈ ( 𝒫 ℕ0 ∩ Fin ) → ( ( ( 𝑘 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ Σ 𝑛 ∈ 𝑘 ( 2 ↑ 𝑛 ) ) ‘ ( bits ‘ Σ 𝑛 ∈ 𝐴 ( 2 ↑ 𝑛 ) ) ) = ( ( 𝑘 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ Σ 𝑛 ∈ 𝑘 ( 2 ↑ 𝑛 ) ) ‘ 𝐴 ) ↔ ( bits ‘ Σ 𝑛 ∈ 𝐴 ( 2 ↑ 𝑛 ) ) = 𝐴 ) ) |
35 |
28 34
|
mpbid |
⊢ ( 𝐴 ∈ ( 𝒫 ℕ0 ∩ Fin ) → ( bits ‘ Σ 𝑛 ∈ 𝐴 ( 2 ↑ 𝑛 ) ) = 𝐴 ) |