Metamath Proof Explorer


Theorem bj-19.23t

Description: Statement 19.23t proved from modalK (obsoleting 19.23v ). (Contributed by BJ, 2-Dec-2023)

Ref Expression
Assertion bj-19.23t ( Ⅎ' 𝑥 𝜓 → ( ∀ 𝑥 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥 𝜑𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 bj-nnf-exlim ( Ⅎ' 𝑥 𝜓 → ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∃ 𝑥 𝜑𝜓 ) ) )
2 bj-nnfa ( Ⅎ' 𝑥 𝜓 → ( 𝜓 → ∀ 𝑥 𝜓 ) )
3 2 imim2d ( Ⅎ' 𝑥 𝜓 → ( ( ∃ 𝑥 𝜑𝜓 ) → ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) ) )
4 19.38 ( ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) → ∀ 𝑥 ( 𝜑𝜓 ) )
5 3 4 syl6 ( Ⅎ' 𝑥 𝜓 → ( ( ∃ 𝑥 𝜑𝜓 ) → ∀ 𝑥 ( 𝜑𝜓 ) ) )
6 1 5 impbid ( Ⅎ' 𝑥 𝜓 → ( ∀ 𝑥 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥 𝜑𝜓 ) ) )