Description: Statement 19.23t proved from modalK (obsoleting 19.23v ). (Contributed by BJ, 2-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-19.23t | ⊢ ( Ⅎ' 𝑥 𝜓 → ( ∀ 𝑥 ( 𝜑 → 𝜓 ) ↔ ( ∃ 𝑥 𝜑 → 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-nnf-exlim | ⊢ ( Ⅎ' 𝑥 𝜓 → ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → ( ∃ 𝑥 𝜑 → 𝜓 ) ) ) | |
| 2 | bj-nnfa | ⊢ ( Ⅎ' 𝑥 𝜓 → ( 𝜓 → ∀ 𝑥 𝜓 ) ) | |
| 3 | 2 | imim2d | ⊢ ( Ⅎ' 𝑥 𝜓 → ( ( ∃ 𝑥 𝜑 → 𝜓 ) → ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) ) ) |
| 4 | 19.38 | ⊢ ( ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) | |
| 5 | 3 4 | syl6 | ⊢ ( Ⅎ' 𝑥 𝜓 → ( ( ∃ 𝑥 𝜑 → 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) |
| 6 | 1 5 | impbid | ⊢ ( Ⅎ' 𝑥 𝜓 → ( ∀ 𝑥 ( 𝜑 → 𝜓 ) ↔ ( ∃ 𝑥 𝜑 → 𝜓 ) ) ) |