Metamath Proof Explorer


Theorem bj-19.36im

Description: One direction of 19.36 from the same axioms as 19.36imv . (Contributed by BJ, 2-Dec-2023)

Ref Expression
Assertion bj-19.36im ( Ⅎ' 𝑥 𝜓 → ( ∃ 𝑥 ( 𝜑𝜓 ) → ( ∀ 𝑥 𝜑𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 19.35 ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) )
2 bj-nnfe ( Ⅎ' 𝑥 𝜓 → ( ∃ 𝑥 𝜓𝜓 ) )
3 2 imim2d ( Ⅎ' 𝑥 𝜓 → ( ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) → ( ∀ 𝑥 𝜑𝜓 ) ) )
4 1 3 syl5bi ( Ⅎ' 𝑥 𝜓 → ( ∃ 𝑥 ( 𝜑𝜓 ) → ( ∀ 𝑥 𝜑𝜓 ) ) )