Step |
Hyp |
Ref |
Expression |
1 |
|
19.40 |
⊢ ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → ( ∃ 𝑥 𝜑 ∧ ∃ 𝑥 𝜓 ) ) |
2 |
|
bj-nnfe |
⊢ ( Ⅎ' 𝑥 𝜑 → ( ∃ 𝑥 𝜑 → 𝜑 ) ) |
3 |
2
|
anim1d |
⊢ ( Ⅎ' 𝑥 𝜑 → ( ( ∃ 𝑥 𝜑 ∧ ∃ 𝑥 𝜓 ) → ( 𝜑 ∧ ∃ 𝑥 𝜓 ) ) ) |
4 |
1 3
|
syl5 |
⊢ ( Ⅎ' 𝑥 𝜑 → ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → ( 𝜑 ∧ ∃ 𝑥 𝜓 ) ) ) |
5 |
|
bj-nnfa |
⊢ ( Ⅎ' 𝑥 𝜑 → ( 𝜑 → ∀ 𝑥 𝜑 ) ) |
6 |
5
|
anim1d |
⊢ ( Ⅎ' 𝑥 𝜑 → ( ( 𝜑 ∧ ∃ 𝑥 𝜓 ) → ( ∀ 𝑥 𝜑 ∧ ∃ 𝑥 𝜓 ) ) ) |
7 |
|
19.29 |
⊢ ( ( ∀ 𝑥 𝜑 ∧ ∃ 𝑥 𝜓 ) → ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) |
8 |
6 7
|
syl6 |
⊢ ( Ⅎ' 𝑥 𝜑 → ( ( 𝜑 ∧ ∃ 𝑥 𝜓 ) → ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ) |
9 |
4 8
|
impbid |
⊢ ( Ⅎ' 𝑥 𝜑 → ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ∃ 𝑥 𝜓 ) ) ) |