Metamath Proof Explorer


Theorem bj-19.42t

Description: Closed form of 19.42 from the same axioms as 19.42v . (Contributed by BJ, 2-Dec-2023)

Ref Expression
Assertion bj-19.42t ( Ⅎ' 𝑥 𝜑 → ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ( 𝜑 ∧ ∃ 𝑥 𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 19.40 ( ∃ 𝑥 ( 𝜑𝜓 ) → ( ∃ 𝑥 𝜑 ∧ ∃ 𝑥 𝜓 ) )
2 bj-nnfe ( Ⅎ' 𝑥 𝜑 → ( ∃ 𝑥 𝜑𝜑 ) )
3 2 anim1d ( Ⅎ' 𝑥 𝜑 → ( ( ∃ 𝑥 𝜑 ∧ ∃ 𝑥 𝜓 ) → ( 𝜑 ∧ ∃ 𝑥 𝜓 ) ) )
4 1 3 syl5 ( Ⅎ' 𝑥 𝜑 → ( ∃ 𝑥 ( 𝜑𝜓 ) → ( 𝜑 ∧ ∃ 𝑥 𝜓 ) ) )
5 bj-nnfa ( Ⅎ' 𝑥 𝜑 → ( 𝜑 → ∀ 𝑥 𝜑 ) )
6 5 anim1d ( Ⅎ' 𝑥 𝜑 → ( ( 𝜑 ∧ ∃ 𝑥 𝜓 ) → ( ∀ 𝑥 𝜑 ∧ ∃ 𝑥 𝜓 ) ) )
7 19.29 ( ( ∀ 𝑥 𝜑 ∧ ∃ 𝑥 𝜓 ) → ∃ 𝑥 ( 𝜑𝜓 ) )
8 6 7 syl6 ( Ⅎ' 𝑥 𝜑 → ( ( 𝜑 ∧ ∃ 𝑥 𝜓 ) → ∃ 𝑥 ( 𝜑𝜓 ) ) )
9 4 8 impbid ( Ⅎ' 𝑥 𝜑 → ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ( 𝜑 ∧ ∃ 𝑥 𝜓 ) ) )