Description: The class of sets verifying a falsity is the empty set (closed form of abf ). (Contributed by BJ, 24-Jul-2019) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-ab0 | ⊢ ( ∀ 𝑥 ¬ 𝜑 → { 𝑥 ∣ 𝜑 } = ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stdpc4 | ⊢ ( ∀ 𝑥 ¬ 𝜑 → [ 𝑦 / 𝑥 ] ¬ 𝜑 ) | |
2 | sbn1 | ⊢ ( [ 𝑦 / 𝑥 ] ¬ 𝜑 → ¬ [ 𝑦 / 𝑥 ] 𝜑 ) | |
3 | 1 2 | syl | ⊢ ( ∀ 𝑥 ¬ 𝜑 → ¬ [ 𝑦 / 𝑥 ] 𝜑 ) |
4 | df-clab | ⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ [ 𝑦 / 𝑥 ] 𝜑 ) | |
5 | 3 4 | sylnibr | ⊢ ( ∀ 𝑥 ¬ 𝜑 → ¬ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) |
6 | 5 | eq0rdv | ⊢ ( ∀ 𝑥 ¬ 𝜑 → { 𝑥 ∣ 𝜑 } = ∅ ) |