Description: The class of sets verifying a tautology is the universal class. (Contributed by BJ, 24-Jul-2019) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-abv | ⊢ ( ∀ 𝑥 𝜑 → { 𝑥 ∣ 𝜑 } = V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trud | ⊢ ( ( 𝜑 ∧ 𝜑 ) → ⊤ ) | |
2 | simpl | ⊢ ( ( 𝜑 ∧ ⊤ ) → 𝜑 ) | |
3 | 1 2 | impbida | ⊢ ( 𝜑 → ( 𝜑 ↔ ⊤ ) ) |
4 | 3 | alimi | ⊢ ( ∀ 𝑥 𝜑 → ∀ 𝑥 ( 𝜑 ↔ ⊤ ) ) |
5 | abbi1 | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ ⊤ ) → { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ ⊤ } ) | |
6 | 4 5 | syl | ⊢ ( ∀ 𝑥 𝜑 → { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ ⊤ } ) |
7 | dfv2 | ⊢ V = { 𝑥 ∣ ⊤ } | |
8 | 6 7 | eqtr4di | ⊢ ( ∀ 𝑥 𝜑 → { 𝑥 ∣ 𝜑 } = V ) |