Metamath Proof Explorer


Theorem bj-abv

Description: The class of sets verifying a tautology is the universal class. (Contributed by BJ, 24-Jul-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-abv ( ∀ 𝑥 𝜑 → { 𝑥𝜑 } = V )

Proof

Step Hyp Ref Expression
1 trud ( ( 𝜑𝜑 ) → ⊤ )
2 simpl ( ( 𝜑 ∧ ⊤ ) → 𝜑 )
3 1 2 impbida ( 𝜑 → ( 𝜑 ↔ ⊤ ) )
4 3 alimi ( ∀ 𝑥 𝜑 → ∀ 𝑥 ( 𝜑 ↔ ⊤ ) )
5 abbi1 ( ∀ 𝑥 ( 𝜑 ↔ ⊤ ) → { 𝑥𝜑 } = { 𝑥 ∣ ⊤ } )
6 4 5 syl ( ∀ 𝑥 𝜑 → { 𝑥𝜑 } = { 𝑥 ∣ ⊤ } )
7 dfv2 V = { 𝑥 ∣ ⊤ }
8 6 7 eqtr4di ( ∀ 𝑥 𝜑 → { 𝑥𝜑 } = V )