Metamath Proof Explorer


Theorem bj-alrim2

Description: Uncurried (imported) form of bj-alrim . (Contributed by BJ, 2-May-2019)

Ref Expression
Assertion bj-alrim2 ( ( Ⅎ 𝑥 𝜑 ∧ ∀ 𝑥 ( 𝜑𝜓 ) ) → ( 𝜑 → ∀ 𝑥 𝜓 ) )

Proof

Step Hyp Ref Expression
1 bj-alrim ( Ⅎ 𝑥 𝜑 → ( ∀ 𝑥 ( 𝜑𝜓 ) → ( 𝜑 → ∀ 𝑥 𝜓 ) ) )
2 1 imp ( ( Ⅎ 𝑥 𝜑 ∧ ∀ 𝑥 ( 𝜑𝜓 ) ) → ( 𝜑 → ∀ 𝑥 𝜓 ) )