Step |
Hyp |
Ref |
Expression |
1 |
|
bj-ax12v |
⊢ ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
2 |
|
equequ2 |
⊢ ( 𝑦 = 𝑡 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑡 ) ) |
3 |
2
|
imbi1d |
⊢ ( 𝑦 = 𝑡 → ( ( 𝑥 = 𝑦 → 𝜑 ) ↔ ( 𝑥 = 𝑡 → 𝜑 ) ) ) |
4 |
3
|
albidv |
⊢ ( 𝑦 = 𝑡 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜑 ) ) ) |
5 |
4
|
imbi2d |
⊢ ( 𝑦 = 𝑡 → ( ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ↔ ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜑 ) ) ) ) |
6 |
2 5
|
imbi12d |
⊢ ( 𝑦 = 𝑡 → ( ( 𝑥 = 𝑦 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) ↔ ( 𝑥 = 𝑡 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜑 ) ) ) ) ) |
7 |
6
|
albidv |
⊢ ( 𝑦 = 𝑡 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) ↔ ∀ 𝑥 ( 𝑥 = 𝑡 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜑 ) ) ) ) ) |
8 |
1 7
|
mpbii |
⊢ ( 𝑦 = 𝑡 → ∀ 𝑥 ( 𝑥 = 𝑡 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜑 ) ) ) ) |
9 |
|
ax6ev |
⊢ ∃ 𝑦 𝑦 = 𝑡 |
10 |
8 9
|
exlimiiv |
⊢ ∀ 𝑥 ( 𝑥 = 𝑡 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜑 ) ) ) |