Metamath Proof Explorer


Theorem bj-ax12ig

Description: A lemma used to prove a weak form of the axiom of substitution. A generalization of bj-ax12i . (Contributed by BJ, 19-Dec-2020)

Ref Expression
Hypotheses bj-ax12ig.1 ( 𝜑 → ( 𝜓𝜒 ) )
bj-ax12ig.2 ( 𝜑 → ( 𝜒 → ∀ 𝑥 𝜒 ) )
Assertion bj-ax12ig ( 𝜑 → ( 𝜓 → ∀ 𝑥 ( 𝜑𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 bj-ax12ig.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 bj-ax12ig.2 ( 𝜑 → ( 𝜒 → ∀ 𝑥 𝜒 ) )
3 1 pm5.32i ( ( 𝜑𝜓 ) ↔ ( 𝜑𝜒 ) )
4 2 imp ( ( 𝜑𝜒 ) → ∀ 𝑥 𝜒 )
5 1 biimprcd ( 𝜒 → ( 𝜑𝜓 ) )
6 4 5 sylg ( ( 𝜑𝜒 ) → ∀ 𝑥 ( 𝜑𝜓 ) )
7 3 6 sylbi ( ( 𝜑𝜓 ) → ∀ 𝑥 ( 𝜑𝜓 ) )
8 7 ex ( 𝜑 → ( 𝜓 → ∀ 𝑥 ( 𝜑𝜓 ) ) )