Metamath Proof Explorer


Theorem bj-ax12ssb

Description: Axiom bj-ax12 expressed using substitution. (Contributed by BJ, 26-Dec-2020) (Proof modification is discouraged.)

Ref Expression
Assertion bj-ax12ssb [ 𝑡 / 𝑥 ] ( 𝜑 → [ 𝑡 / 𝑥 ] 𝜑 )

Proof

Step Hyp Ref Expression
1 bj-ax12 𝑥 ( 𝑥 = 𝑡 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑡𝜑 ) ) )
2 sb6 ( [ 𝑡 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑡𝜑 ) )
3 2 imbi2i ( ( 𝜑 → [ 𝑡 / 𝑥 ] 𝜑 ) ↔ ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑡𝜑 ) ) )
4 3 imbi2i ( ( 𝑥 = 𝑡 → ( 𝜑 → [ 𝑡 / 𝑥 ] 𝜑 ) ) ↔ ( 𝑥 = 𝑡 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑡𝜑 ) ) ) )
5 4 albii ( ∀ 𝑥 ( 𝑥 = 𝑡 → ( 𝜑 → [ 𝑡 / 𝑥 ] 𝜑 ) ) ↔ ∀ 𝑥 ( 𝑥 = 𝑡 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑡𝜑 ) ) ) )
6 1 5 mpbir 𝑥 ( 𝑥 = 𝑡 → ( 𝜑 → [ 𝑡 / 𝑥 ] 𝜑 ) )
7 sb6 ( [ 𝑡 / 𝑥 ] ( 𝜑 → [ 𝑡 / 𝑥 ] 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑡 → ( 𝜑 → [ 𝑡 / 𝑥 ] 𝜑 ) ) )
8 6 7 mpbir [ 𝑡 / 𝑥 ] ( 𝜑 → [ 𝑡 / 𝑥 ] 𝜑 )