Metamath Proof Explorer


Theorem bj-ax12v3ALT

Description: Alternate proof of bj-ax12v3 . Uses axc11r and axc15 instead of ax-12 . (Contributed by BJ, 6-Jul-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-ax12v3ALT ( 𝑥 = 𝑦 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 ax-5 ( 𝜑 → ∀ 𝑦 𝜑 )
2 axc11r ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑦 𝜑 → ∀ 𝑥 𝜑 ) )
3 ala1 ( ∀ 𝑥 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) )
4 1 2 3 syl56 ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ) )
5 4 a1d ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ) ) )
6 axc15 ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ) ) )
7 5 6 pm2.61i ( 𝑥 = 𝑦 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ) )