Metamath Proof Explorer


Theorem bj-ax6elem1

Description: Lemma for bj-ax6e . (Contributed by BJ, 22-Dec-2020) (Proof modification is discouraged.)

Ref Expression
Assertion bj-ax6elem1 ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑦 = 𝑧 → ∀ 𝑥 𝑦 = 𝑧 ) )

Proof

Step Hyp Ref Expression
1 axc9 ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ( 𝑦 = 𝑧 → ∀ 𝑥 𝑦 = 𝑧 ) ) )
2 axc16 ( ∀ 𝑥 𝑥 = 𝑧 → ( 𝑦 = 𝑧 → ∀ 𝑥 𝑦 = 𝑧 ) )
3 1 2 pm2.61d2 ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑦 = 𝑧 → ∀ 𝑥 𝑦 = 𝑧 ) )