Description: Lemma for bj-ax6e . (Contributed by BJ, 22-Dec-2020) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-ax6elem2 | ⊢ ( ∀ 𝑥 𝑦 = 𝑧 → ∃ 𝑥 𝑥 = 𝑦 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax6ev | ⊢ ∃ 𝑥 𝑥 = 𝑧 | |
2 | equeucl | ⊢ ( 𝑥 = 𝑧 → ( 𝑦 = 𝑧 → 𝑥 = 𝑦 ) ) | |
3 | 1 2 | eximii | ⊢ ∃ 𝑥 ( 𝑦 = 𝑧 → 𝑥 = 𝑦 ) |
4 | 3 | 19.35i | ⊢ ( ∀ 𝑥 𝑦 = 𝑧 → ∃ 𝑥 𝑥 = 𝑦 ) |