Metamath Proof Explorer
Description: When ph is substituted for ps , both sides express a form of
nonfreeness. (Contributed by BJ, 20-Oct-2019)
|
|
Ref |
Expression |
|
Assertion |
bj-biexal3 |
⊢ ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜓 ) ↔ ∀ 𝑥 ( ∃ 𝑥 𝜑 → 𝜓 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
bj-biexal1 |
⊢ ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜓 ) ↔ ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) ) |
2 |
|
bj-biexal2 |
⊢ ( ∀ 𝑥 ( ∃ 𝑥 𝜑 → 𝜓 ) ↔ ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) ) |
3 |
1 2
|
bitr4i |
⊢ ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜓 ) ↔ ∀ 𝑥 ( ∃ 𝑥 𝜑 → 𝜓 ) ) |