Metamath Proof Explorer


Theorem bj-biexal3

Description: When ph is substituted for ps , both sides express a form of nonfreeness. (Contributed by BJ, 20-Oct-2019)

Ref Expression
Assertion bj-biexal3 ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜓 ) ↔ ∀ 𝑥 ( ∃ 𝑥 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 bj-biexal1 ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜓 ) ↔ ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) )
2 bj-biexal2 ( ∀ 𝑥 ( ∃ 𝑥 𝜑𝜓 ) ↔ ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) )
3 1 2 bitr4i ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜓 ) ↔ ∀ 𝑥 ( ∃ 𝑥 𝜑𝜓 ) )