Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BJ
First-order logic
Removing dependencies on ax-13 (and ax-11)
bj-cbv2v
Metamath Proof Explorer
Description: Version of cbv2 with a disjoint variable condition, which does not
require ax-13 . (Contributed by BJ , 16-Jun-2019)
(Proof modification is discouraged.)
Ref
Expression
Hypotheses
bj-cbv2v.1
⊢ Ⅎ 𝑥 𝜑
bj-cbv2v.2
⊢ Ⅎ 𝑦 𝜑
bj-cbv2v.3
⊢ ( 𝜑 → Ⅎ 𝑦 𝜓 )
bj-cbv2v.4
⊢ ( 𝜑 → Ⅎ 𝑥 𝜒 )
bj-cbv2v.5
⊢ ( 𝜑 → ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜒 ) ) )
Assertion
bj-cbv2v
⊢ ( 𝜑 → ( ∀ 𝑥 𝜓 ↔ ∀ 𝑦 𝜒 ) )
Proof
Step
Hyp
Ref
Expression
1
bj-cbv2v.1
⊢ Ⅎ 𝑥 𝜑
2
bj-cbv2v.2
⊢ Ⅎ 𝑦 𝜑
3
bj-cbv2v.3
⊢ ( 𝜑 → Ⅎ 𝑦 𝜓 )
4
bj-cbv2v.4
⊢ ( 𝜑 → Ⅎ 𝑥 𝜒 )
5
bj-cbv2v.5
⊢ ( 𝜑 → ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜒 ) ) )
6
2
nf5ri
⊢ ( 𝜑 → ∀ 𝑦 𝜑 )
7
1
nfal
⊢ Ⅎ 𝑥 ∀ 𝑦 𝜑
8
7
nf5ri
⊢ ( ∀ 𝑦 𝜑 → ∀ 𝑥 ∀ 𝑦 𝜑 )
9
6 8
syl
⊢ ( 𝜑 → ∀ 𝑥 ∀ 𝑦 𝜑 )
10
3
nf5rd
⊢ ( 𝜑 → ( 𝜓 → ∀ 𝑦 𝜓 ) )
11
4
nf5rd
⊢ ( 𝜑 → ( 𝜒 → ∀ 𝑥 𝜒 ) )
12
10 11 5
bj-cbv2hv
⊢ ( ∀ 𝑥 ∀ 𝑦 𝜑 → ( ∀ 𝑥 𝜓 ↔ ∀ 𝑦 𝜒 ) )
13
9 12
syl
⊢ ( 𝜑 → ( ∀ 𝑥 𝜓 ↔ ∀ 𝑦 𝜒 ) )