Step |
Hyp |
Ref |
Expression |
1 |
|
bj-exalim |
⊢ ( ∀ 𝑦 ( 𝜒 → ( 𝜑 → 𝜓 ) ) → ( ∃ 𝑦 𝜒 → ( ∀ 𝑦 𝜑 → ∃ 𝑦 𝜓 ) ) ) |
2 |
1
|
alimi |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜒 → ( 𝜑 → 𝜓 ) ) → ∀ 𝑥 ( ∃ 𝑦 𝜒 → ( ∀ 𝑦 𝜑 → ∃ 𝑦 𝜓 ) ) ) |
3 |
|
bj-alexim |
⊢ ( ∀ 𝑥 ( ∃ 𝑦 𝜒 → ( ∀ 𝑦 𝜑 → ∃ 𝑦 𝜓 ) ) → ( ∀ 𝑥 ∃ 𝑦 𝜒 → ( ∃ 𝑥 ∀ 𝑦 𝜑 → ∃ 𝑥 ∃ 𝑦 𝜓 ) ) ) |
4 |
2 3
|
syl |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜒 → ( 𝜑 → 𝜓 ) ) → ( ∀ 𝑥 ∃ 𝑦 𝜒 → ( ∃ 𝑥 ∀ 𝑦 𝜑 → ∃ 𝑥 ∃ 𝑦 𝜓 ) ) ) |
5 |
|
exim |
⊢ ( ∀ 𝑥 ( 𝜑 → ∀ 𝑦 𝜑 ) → ( ∃ 𝑥 𝜑 → ∃ 𝑥 ∀ 𝑦 𝜑 ) ) |
6 |
|
imim2 |
⊢ ( ( ∃ 𝑥 ∀ 𝑦 𝜑 → ∃ 𝑥 ∃ 𝑦 𝜓 ) → ( ( ∃ 𝑥 𝜑 → ∃ 𝑥 ∀ 𝑦 𝜑 ) → ( ∃ 𝑥 𝜑 → ∃ 𝑥 ∃ 𝑦 𝜓 ) ) ) |
7 |
|
imim1 |
⊢ ( ( ∃ 𝑥 𝜑 → ∃ 𝑥 ∃ 𝑦 𝜓 ) → ( ( ∃ 𝑥 ∃ 𝑦 𝜓 → ∃ 𝑦 𝜓 ) → ( ∃ 𝑥 𝜑 → ∃ 𝑦 𝜓 ) ) ) |
8 |
5 6 7
|
syl56 |
⊢ ( ( ∃ 𝑥 ∀ 𝑦 𝜑 → ∃ 𝑥 ∃ 𝑦 𝜓 ) → ( ∀ 𝑥 ( 𝜑 → ∀ 𝑦 𝜑 ) → ( ( ∃ 𝑥 ∃ 𝑦 𝜓 → ∃ 𝑦 𝜓 ) → ( ∃ 𝑥 𝜑 → ∃ 𝑦 𝜓 ) ) ) ) |
9 |
4 8
|
syl6com |
⊢ ( ∀ 𝑥 ∃ 𝑦 𝜒 → ( ∀ 𝑥 ∀ 𝑦 ( 𝜒 → ( 𝜑 → 𝜓 ) ) → ( ∀ 𝑥 ( 𝜑 → ∀ 𝑦 𝜑 ) → ( ( ∃ 𝑥 ∃ 𝑦 𝜓 → ∃ 𝑦 𝜓 ) → ( ∃ 𝑥 𝜑 → ∃ 𝑦 𝜓 ) ) ) ) ) |