Metamath Proof Explorer


Theorem bj-csbprc

Description: More direct proof of csbprc (fewer essential steps). (Contributed by BJ, 24-Jul-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-csbprc ( ¬ 𝐴 ∈ V → 𝐴 / 𝑥 𝐵 = ∅ )

Proof

Step Hyp Ref Expression
1 df-csb 𝐴 / 𝑥 𝐵 = { 𝑦[ 𝐴 / 𝑥 ] 𝑦𝐵 }
2 sbcex ( [ 𝐴 / 𝑥 ] 𝑦𝐵𝐴 ∈ V )
3 2 con3i ( ¬ 𝐴 ∈ V → ¬ [ 𝐴 / 𝑥 ] 𝑦𝐵 )
4 3 alrimiv ( ¬ 𝐴 ∈ V → ∀ 𝑦 ¬ [ 𝐴 / 𝑥 ] 𝑦𝐵 )
5 bj-ab0 ( ∀ 𝑦 ¬ [ 𝐴 / 𝑥 ] 𝑦𝐵 → { 𝑦[ 𝐴 / 𝑥 ] 𝑦𝐵 } = ∅ )
6 4 5 syl ( ¬ 𝐴 ∈ V → { 𝑦[ 𝐴 / 𝑥 ] 𝑦𝐵 } = ∅ )
7 1 6 syl5eq ( ¬ 𝐴 ∈ V → 𝐴 / 𝑥 𝐵 = ∅ )