Metamath Proof Explorer


Theorem bj-dfnnf2

Description: Alternate definition of df-bj-nnf using only primitive symbols ( -> , -. , A. ) in each conjunct. (Contributed by BJ, 20-Aug-2023)

Ref Expression
Assertion bj-dfnnf2 ( Ⅎ' 𝑥 𝜑 ↔ ( ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 df-bj-nnf ( Ⅎ' 𝑥 𝜑 ↔ ( ( ∃ 𝑥 𝜑𝜑 ) ∧ ( 𝜑 → ∀ 𝑥 𝜑 ) ) )
2 eximal ( ( ∃ 𝑥 𝜑𝜑 ) ↔ ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) )
3 2 anbi2ci ( ( ( ∃ 𝑥 𝜑𝜑 ) ∧ ( 𝜑 → ∀ 𝑥 𝜑 ) ) ↔ ( ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) ) )
4 1 3 bitri ( Ⅎ' 𝑥 𝜑 ↔ ( ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) ) )