Description: Alternate definition of nonfreeness when sp is available. (Contributed by BJ, 28-Jul-2023) The proof should not rely on df-nf . (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-dfnnf3 | ⊢ ( Ⅎ' 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-nnfea | ⊢ ( Ⅎ' 𝑥 𝜑 → ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) ) | |
2 | bj-19.21bit | ⊢ ( ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) → ( ∃ 𝑥 𝜑 → 𝜑 ) ) | |
3 | bj-19.23bit | ⊢ ( ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) → ( 𝜑 → ∀ 𝑥 𝜑 ) ) | |
4 | df-bj-nnf | ⊢ ( Ⅎ' 𝑥 𝜑 ↔ ( ( ∃ 𝑥 𝜑 → 𝜑 ) ∧ ( 𝜑 → ∀ 𝑥 𝜑 ) ) ) | |
5 | 2 3 4 | sylanbrc | ⊢ ( ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) → Ⅎ' 𝑥 𝜑 ) |
6 | 1 5 | impbii | ⊢ ( Ⅎ' 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) ) |