Metamath Proof Explorer


Theorem bj-dfnnf3

Description: Alternate definition of nonfreeness when sp is available. (Contributed by BJ, 28-Jul-2023) The proof should not rely on df-nf . (Proof modification is discouraged.)

Ref Expression
Assertion bj-dfnnf3 ( Ⅎ' 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) )

Proof

Step Hyp Ref Expression
1 bj-nnfea ( Ⅎ' 𝑥 𝜑 → ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) )
2 bj-19.21bit ( ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) → ( ∃ 𝑥 𝜑𝜑 ) )
3 bj-19.23bit ( ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) → ( 𝜑 → ∀ 𝑥 𝜑 ) )
4 df-bj-nnf ( Ⅎ' 𝑥 𝜑 ↔ ( ( ∃ 𝑥 𝜑𝜑 ) ∧ ( 𝜑 → ∀ 𝑥 𝜑 ) ) )
5 2 3 4 sylanbrc ( ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) → Ⅎ' 𝑥 𝜑 )
6 1 5 impbii ( Ⅎ' 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) )