| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-endval.c | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 2 |  | bj-endval.x | ⊢ ( 𝜑  →  𝑋  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 3 |  | baseid | ⊢ Base  =  Slot  ( Base ‘ ndx ) | 
						
							| 4 |  | fvexd | ⊢ ( 𝜑  →  ( ( End  ‘ 𝐶 ) ‘ 𝑋 )  ∈  V ) | 
						
							| 5 | 3 4 | strfvnd | ⊢ ( 𝜑  →  ( Base ‘ ( ( End  ‘ 𝐶 ) ‘ 𝑋 ) )  =  ( ( ( End  ‘ 𝐶 ) ‘ 𝑋 ) ‘ ( Base ‘ ndx ) ) ) | 
						
							| 6 | 1 2 | bj-endval | ⊢ ( 𝜑  →  ( ( End  ‘ 𝐶 ) ‘ 𝑋 )  =  { 〈 ( Base ‘ ndx ) ,  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 〈 𝑋 ,  𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) 〉 } ) | 
						
							| 7 | 6 | fveq1d | ⊢ ( 𝜑  →  ( ( ( End  ‘ 𝐶 ) ‘ 𝑋 ) ‘ ( Base ‘ ndx ) )  =  ( { 〈 ( Base ‘ ndx ) ,  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 〈 𝑋 ,  𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) 〉 } ‘ ( Base ‘ ndx ) ) ) | 
						
							| 8 |  | basendxnplusgndx | ⊢ ( Base ‘ ndx )  ≠  ( +g ‘ ndx ) | 
						
							| 9 |  | fvex | ⊢ ( Base ‘ ndx )  ∈  V | 
						
							| 10 |  | ovex | ⊢ ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 )  ∈  V | 
						
							| 11 | 9 10 | fvpr1 | ⊢ ( ( Base ‘ ndx )  ≠  ( +g ‘ ndx )  →  ( { 〈 ( Base ‘ ndx ) ,  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 〈 𝑋 ,  𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) 〉 } ‘ ( Base ‘ ndx ) )  =  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 ) ) | 
						
							| 12 | 8 11 | mp1i | ⊢ ( 𝜑  →  ( { 〈 ( Base ‘ ndx ) ,  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 〈 𝑋 ,  𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) 〉 } ‘ ( Base ‘ ndx ) )  =  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 ) ) | 
						
							| 13 | 5 7 12 | 3eqtrd | ⊢ ( 𝜑  →  ( Base ‘ ( ( End  ‘ 𝐶 ) ‘ 𝑋 ) )  =  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 ) ) |