Step |
Hyp |
Ref |
Expression |
1 |
|
bj-endval.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
2 |
|
bj-endval.x |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
3 |
1 2
|
bj-endbase |
⊢ ( 𝜑 → ( Base ‘ ( ( End ‘ 𝐶 ) ‘ 𝑋 ) ) = ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
4 |
3
|
eqcomd |
⊢ ( 𝜑 → ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) = ( Base ‘ ( ( End ‘ 𝐶 ) ‘ 𝑋 ) ) ) |
5 |
1 2
|
bj-endcomp |
⊢ ( 𝜑 → ( +g ‘ ( ( End ‘ 𝐶 ) ‘ 𝑋 ) ) = ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) ) |
6 |
5
|
eqcomd |
⊢ ( 𝜑 → ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) = ( +g ‘ ( ( End ‘ 𝐶 ) ‘ 𝑋 ) ) ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
8 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
9 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
10 |
1
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) → 𝐶 ∈ Cat ) |
11 |
2
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
12 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) → 𝑦 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
13 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) → 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
14 |
7 8 9 10 11 11 11 12 13
|
catcocl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) → ( 𝑥 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑦 ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
15 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑧 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝐶 ∈ Cat ) |
16 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑧 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
17 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑧 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑧 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) |
18 |
|
simp3 |
⊢ ( ( 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑧 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) → 𝑧 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
19 |
17 18
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑧 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝑧 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
20 |
|
simp2 |
⊢ ( ( 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑧 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) → 𝑦 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
21 |
17 20
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑧 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝑦 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
22 |
|
simp1 |
⊢ ( ( 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑧 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) → 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
23 |
17 22
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑧 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
24 |
7 8 9 15 16 16 16 19 21 16 23
|
catass |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑧 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( ( 𝑥 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑦 ) ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑧 ) = ( 𝑥 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) ( 𝑦 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑧 ) ) ) |
25 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
26 |
7 8 25 1 2
|
catidcl |
⊢ ( 𝜑 → ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
27 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) → 𝐶 ∈ Cat ) |
28 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
29 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) → 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
30 |
7 8 25 27 28 9 28 29
|
catlid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) → ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑥 ) = 𝑥 ) |
31 |
7 8 25 27 28 9 28 29
|
catrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) → ( 𝑥 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) = 𝑥 ) |
32 |
4 6 14 24 26 30 31
|
ismndd |
⊢ ( 𝜑 → ( ( End ‘ 𝐶 ) ‘ 𝑋 ) ∈ Mnd ) |