| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-endval.c | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 2 |  | bj-endval.x | ⊢ ( 𝜑  →  𝑋  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 3 | 1 2 | bj-endbase | ⊢ ( 𝜑  →  ( Base ‘ ( ( End  ‘ 𝐶 ) ‘ 𝑋 ) )  =  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 ) ) | 
						
							| 4 | 3 | eqcomd | ⊢ ( 𝜑  →  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 )  =  ( Base ‘ ( ( End  ‘ 𝐶 ) ‘ 𝑋 ) ) ) | 
						
							| 5 | 1 2 | bj-endcomp | ⊢ ( 𝜑  →  ( +g ‘ ( ( End  ‘ 𝐶 ) ‘ 𝑋 ) )  =  ( 〈 𝑋 ,  𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) ) | 
						
							| 6 | 5 | eqcomd | ⊢ ( 𝜑  →  ( 〈 𝑋 ,  𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 )  =  ( +g ‘ ( ( End  ‘ 𝐶 ) ‘ 𝑋 ) ) ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 ) | 
						
							| 8 |  | eqid | ⊢ ( Hom  ‘ 𝐶 )  =  ( Hom  ‘ 𝐶 ) | 
						
							| 9 |  | eqid | ⊢ ( comp ‘ 𝐶 )  =  ( comp ‘ 𝐶 ) | 
						
							| 10 | 1 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 )  ∧  𝑦  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 ) )  →  𝐶  ∈  Cat ) | 
						
							| 11 | 2 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 )  ∧  𝑦  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 ) )  →  𝑋  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 12 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 )  ∧  𝑦  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 ) )  →  𝑦  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 ) ) | 
						
							| 13 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 )  ∧  𝑦  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 ) )  →  𝑥  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 ) ) | 
						
							| 14 | 7 8 9 10 11 11 11 12 13 | catcocl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 )  ∧  𝑦  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 ) )  →  ( 𝑥 ( 〈 𝑋 ,  𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑦 )  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 ) ) | 
						
							| 15 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 )  ∧  𝑦  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 )  ∧  𝑧  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 ) ) )  →  𝐶  ∈  Cat ) | 
						
							| 16 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 )  ∧  𝑦  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 )  ∧  𝑧  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 ) ) )  →  𝑋  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 17 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 )  ∧  𝑦  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 )  ∧  𝑧  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 ) ) )  →  ( 𝑥  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 )  ∧  𝑦  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 )  ∧  𝑧  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 ) ) ) | 
						
							| 18 |  | simp3 | ⊢ ( ( 𝑥  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 )  ∧  𝑦  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 )  ∧  𝑧  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 ) )  →  𝑧  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 ) ) | 
						
							| 19 | 17 18 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 )  ∧  𝑦  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 )  ∧  𝑧  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 ) ) )  →  𝑧  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 ) ) | 
						
							| 20 |  | simp2 | ⊢ ( ( 𝑥  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 )  ∧  𝑦  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 )  ∧  𝑧  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 ) )  →  𝑦  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 ) ) | 
						
							| 21 | 17 20 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 )  ∧  𝑦  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 )  ∧  𝑧  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 ) ) )  →  𝑦  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 ) ) | 
						
							| 22 |  | simp1 | ⊢ ( ( 𝑥  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 )  ∧  𝑦  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 )  ∧  𝑧  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 ) )  →  𝑥  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 ) ) | 
						
							| 23 | 17 22 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 )  ∧  𝑦  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 )  ∧  𝑧  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 ) ) )  →  𝑥  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 ) ) | 
						
							| 24 | 7 8 9 15 16 16 16 19 21 16 23 | catass | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 )  ∧  𝑦  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 )  ∧  𝑧  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 ) ) )  →  ( ( 𝑥 ( 〈 𝑋 ,  𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑦 ) ( 〈 𝑋 ,  𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑧 )  =  ( 𝑥 ( 〈 𝑋 ,  𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) ( 𝑦 ( 〈 𝑋 ,  𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑧 ) ) ) | 
						
							| 25 |  | eqid | ⊢ ( Id ‘ 𝐶 )  =  ( Id ‘ 𝐶 ) | 
						
							| 26 | 7 8 25 1 2 | catidcl | ⊢ ( 𝜑  →  ( ( Id ‘ 𝐶 ) ‘ 𝑋 )  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 ) ) | 
						
							| 27 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 ) )  →  𝐶  ∈  Cat ) | 
						
							| 28 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 ) )  →  𝑋  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 29 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 ) )  →  𝑥  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 ) ) | 
						
							| 30 | 7 8 25 27 28 9 28 29 | catlid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 ) )  →  ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 ,  𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑥 )  =  𝑥 ) | 
						
							| 31 | 7 8 25 27 28 9 28 29 | catrid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑋 ) )  →  ( 𝑥 ( 〈 𝑋 ,  𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) )  =  𝑥 ) | 
						
							| 32 | 4 6 14 24 26 30 31 | ismndd | ⊢ ( 𝜑  →  ( ( End  ‘ 𝐶 ) ‘ 𝑋 )  ∈  Mnd ) |