Metamath Proof Explorer


Theorem bj-eqs

Description: A lemma for substitutions, proved from Tarski's FOL. The version without DV ( x , y ) is true but requires ax-13 . The disjoint variable condition DV ( x , ph ) is necessary for both directions: consider substituting x = z for ph . (Contributed by BJ, 25-May-2021)

Ref Expression
Assertion bj-eqs ( 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) )

Proof

Step Hyp Ref Expression
1 ax-1 ( 𝜑 → ( 𝑥 = 𝑦𝜑 ) )
2 1 alrimiv ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) )
3 exim ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) → ( ∃ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 𝜑 ) )
4 ax6ev 𝑥 𝑥 = 𝑦
5 pm2.27 ( ∃ 𝑥 𝑥 = 𝑦 → ( ( ∃ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 𝜑 ) → ∃ 𝑥 𝜑 ) )
6 4 5 ax-mp ( ( ∃ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 𝜑 ) → ∃ 𝑥 𝜑 )
7 ax5e ( ∃ 𝑥 𝜑𝜑 )
8 3 6 7 3syl ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) → 𝜑 )
9 2 8 impbii ( 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) )