Metamath Proof Explorer


Theorem bj-equsalvwd

Description: Variant of equsalvw . (Contributed by BJ, 7-Oct-2024)

Ref Expression
Hypotheses bj-equsalvwd.nf0 ( 𝜑 → ∀ 𝑥 𝜑 )
bj-equsalvwd.nf ( 𝜑 → Ⅎ' 𝑥 𝜒 )
bj-equsalvwd.is ( ( 𝜑𝑥 = 𝑦 ) → ( 𝜓𝜒 ) )
Assertion bj-equsalvwd ( 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝑦𝜓 ) ↔ 𝜒 ) )

Proof

Step Hyp Ref Expression
1 bj-equsalvwd.nf0 ( 𝜑 → ∀ 𝑥 𝜑 )
2 bj-equsalvwd.nf ( 𝜑 → Ⅎ' 𝑥 𝜒 )
3 bj-equsalvwd.is ( ( 𝜑𝑥 = 𝑦 ) → ( 𝜓𝜒 ) )
4 3 pm5.74da ( 𝜑 → ( ( 𝑥 = 𝑦𝜓 ) ↔ ( 𝑥 = 𝑦𝜒 ) ) )
5 1 4 albidh ( 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝑦𝜓 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦𝜒 ) ) )
6 bj-equsvt ( Ⅎ' 𝑥 𝜒 → ( ∀ 𝑥 ( 𝑥 = 𝑦𝜒 ) ↔ 𝜒 ) )
7 2 6 syl ( 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝑦𝜒 ) ↔ 𝜒 ) )
8 5 7 bitrd ( 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝑦𝜓 ) ↔ 𝜒 ) )