Description: Variant of equsexvw . (Contributed by BJ, 7-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bj-equsexvwd.nf0 | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) | |
bj-equsexvwd.nf | ⊢ ( 𝜑 → Ⅎ' 𝑥 𝜒 ) | ||
bj-equsexvwd.is | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝜓 ↔ 𝜒 ) ) | ||
Assertion | bj-equsexvwd | ⊢ ( 𝜑 → ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜓 ) ↔ 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-equsexvwd.nf0 | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) | |
2 | bj-equsexvwd.nf | ⊢ ( 𝜑 → Ⅎ' 𝑥 𝜒 ) | |
3 | bj-equsexvwd.is | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝜓 ↔ 𝜒 ) ) | |
4 | alinexa | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑦 → ¬ 𝜓 ) ↔ ¬ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜓 ) ) | |
5 | bj-nnfnt | ⊢ ( Ⅎ' 𝑥 𝜒 ↔ Ⅎ' 𝑥 ¬ 𝜒 ) | |
6 | 2 5 | sylib | ⊢ ( 𝜑 → Ⅎ' 𝑥 ¬ 𝜒 ) |
7 | 3 | notbid | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( ¬ 𝜓 ↔ ¬ 𝜒 ) ) |
8 | 1 6 7 | bj-equsalvwd | ⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → ¬ 𝜓 ) ↔ ¬ 𝜒 ) ) |
9 | 4 8 | bitr3id | ⊢ ( 𝜑 → ( ¬ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜓 ) ↔ ¬ 𝜒 ) ) |
10 | 9 | con4bid | ⊢ ( 𝜑 → ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜓 ) ↔ 𝜒 ) ) |