Metamath Proof Explorer


Theorem bj-equsexvwd

Description: Variant of equsexvw . (Contributed by BJ, 7-Oct-2024)

Ref Expression
Hypotheses bj-equsexvwd.nf0 ( 𝜑 → ∀ 𝑥 𝜑 )
bj-equsexvwd.nf ( 𝜑 → Ⅎ' 𝑥 𝜒 )
bj-equsexvwd.is ( ( 𝜑𝑥 = 𝑦 ) → ( 𝜓𝜒 ) )
Assertion bj-equsexvwd ( 𝜑 → ( ∃ 𝑥 ( 𝑥 = 𝑦𝜓 ) ↔ 𝜒 ) )

Proof

Step Hyp Ref Expression
1 bj-equsexvwd.nf0 ( 𝜑 → ∀ 𝑥 𝜑 )
2 bj-equsexvwd.nf ( 𝜑 → Ⅎ' 𝑥 𝜒 )
3 bj-equsexvwd.is ( ( 𝜑𝑥 = 𝑦 ) → ( 𝜓𝜒 ) )
4 alinexa ( ∀ 𝑥 ( 𝑥 = 𝑦 → ¬ 𝜓 ) ↔ ¬ ∃ 𝑥 ( 𝑥 = 𝑦𝜓 ) )
5 bj-nnfnt ( Ⅎ' 𝑥 𝜒 ↔ Ⅎ' 𝑥 ¬ 𝜒 )
6 2 5 sylib ( 𝜑 → Ⅎ' 𝑥 ¬ 𝜒 )
7 3 notbid ( ( 𝜑𝑥 = 𝑦 ) → ( ¬ 𝜓 ↔ ¬ 𝜒 ) )
8 1 6 7 bj-equsalvwd ( 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → ¬ 𝜓 ) ↔ ¬ 𝜒 ) )
9 4 8 bitr3id ( 𝜑 → ( ¬ ∃ 𝑥 ( 𝑥 = 𝑦𝜓 ) ↔ ¬ 𝜒 ) )
10 9 con4bid ( 𝜑 → ( ∃ 𝑥 ( 𝑥 = 𝑦𝜓 ) ↔ 𝜒 ) )