Description: A variant of equsv . (Contributed by BJ, 7-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-equsvt | ⊢ ( Ⅎ' 𝑥 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ↔ 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-19.23t | ⊢ ( Ⅎ' 𝑥 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ↔ ( ∃ 𝑥 𝑥 = 𝑦 → 𝜑 ) ) ) | |
2 | ax6ev | ⊢ ∃ 𝑥 𝑥 = 𝑦 | |
3 | 2 | a1bi | ⊢ ( 𝜑 ↔ ( ∃ 𝑥 𝑥 = 𝑦 → 𝜑 ) ) |
4 | 1 3 | bitr4di | ⊢ ( Ⅎ' 𝑥 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ↔ 𝜑 ) ) |