Metamath Proof Explorer


Theorem bj-equsvt

Description: A variant of equsv . (Contributed by BJ, 7-Oct-2024)

Ref Expression
Assertion bj-equsvt ( Ⅎ' 𝑥 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ↔ 𝜑 ) )

Proof

Step Hyp Ref Expression
1 bj-19.23t ( Ⅎ' 𝑥 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ↔ ( ∃ 𝑥 𝑥 = 𝑦𝜑 ) ) )
2 ax6ev 𝑥 𝑥 = 𝑦
3 2 a1bi ( 𝜑 ↔ ( ∃ 𝑥 𝑥 = 𝑦𝜑 ) )
4 1 3 bitr4di ( Ⅎ' 𝑥 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ↔ 𝜑 ) )