Metamath Proof Explorer


Theorem bj-exalimsi

Description: An inference for distributing quantifiers over a nested implication. (Almost) the general statement that spimfw proves. (Contributed by BJ, 29-Sep-2019)

Ref Expression
Hypotheses bj-exalimsi.1 ( 𝜑 → ( 𝜓𝜒 ) )
bj-exalimsi.2 ( ∃ 𝑥 𝜑 → ( ¬ 𝜒 → ∀ 𝑥 ¬ 𝜒 ) )
Assertion bj-exalimsi ( ∃ 𝑥 𝜑 → ( ∀ 𝑥 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 bj-exalimsi.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 bj-exalimsi.2 ( ∃ 𝑥 𝜑 → ( ¬ 𝜒 → ∀ 𝑥 ¬ 𝜒 ) )
3 2 bj-exalims ( ∀ 𝑥 ( 𝜑 → ( 𝜓𝜒 ) ) → ( ∃ 𝑥 𝜑 → ( ∀ 𝑥 𝜓𝜒 ) ) )
4 3 1 mpg ( ∃ 𝑥 𝜑 → ( ∀ 𝑥 𝜓𝜒 ) )