Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BJ
First-order logic
Adding ax-4
bj-exalimsi
Metamath Proof Explorer
Description: An inference for distributing quantifiers over a nested implication.
(Almost) the general statement that spimfw proves. (Contributed by BJ , 29-Sep-2019)
Ref
Expression
Hypotheses
bj-exalimsi.1
⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) )
bj-exalimsi.2
⊢ ( ∃ 𝑥 𝜑 → ( ¬ 𝜒 → ∀ 𝑥 ¬ 𝜒 ) )
Assertion
bj-exalimsi
⊢ ( ∃ 𝑥 𝜑 → ( ∀ 𝑥 𝜓 → 𝜒 ) )
Proof
Step
Hyp
Ref
Expression
1
bj-exalimsi.1
⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) )
2
bj-exalimsi.2
⊢ ( ∃ 𝑥 𝜑 → ( ¬ 𝜒 → ∀ 𝑥 ¬ 𝜒 ) )
3
2
bj-exalims
⊢ ( ∀ 𝑥 ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ∃ 𝑥 𝜑 → ( ∀ 𝑥 𝜓 → 𝜒 ) ) )
4
3 1
mpg
⊢ ( ∃ 𝑥 𝜑 → ( ∀ 𝑥 𝜓 → 𝜒 ) )